

Horizon EDA documentation

Horizon EDA is an Electronic Design Automation package supporting an integrated end-to-end workflow for printed circuit board design including parts management and schematic entry.

Take a look at the top features, just try it out or begin by reading from the start.

[image: _images/collage.png]

About:

	Why another EDA package

	Feature overview

	Non-Goals

	Made with Horizon EDA

Getting Started:

	Installation
	Stable release

	Development version

	Setting up a pool
	Git

	Pool manager

	Create a new Project

	Draw a Schematic
	Placing Parts

	Connecting Parts

	Basic Movement

	Power Nets

	Annotation

	Create a Board
	Draw a Board Outline

	Place the Packages

	Add Planes

	Route the Nets

	Example project

	Digi-Key API integration
	Registering

	Logging in

Basic Editor Usage:

	Tools

	Spacebar Menu

	Grid

	Numeric Entries

	Drawing

	Selection

	Moving and the interactive manipulator

	Layers

	Tips and Tricks

Schematic Editor:

	Schematic Editor
	Placing parts

	Nets and net segments

	Power symbols

	Buses

	Diffpairs

	To board

	Hierarchy

	Net ties

	Screenshots

Board Editor:

	Board Editor

	Copying layout and placement

	Backannotating connections

	Rules

Pool:

	Why a Pool?
	What’s a pool

	Organisation in the file system

	Including other pools

	Contributing

	Elements of a Part
	Parts

	Packages

	Entities

	Units

	Symbols

	Padstacks

	Project pool

	Pool Manager
	Inherting from an existing part

	Create part from existing Entity

	Create all-new part

	Where to save things

	The Pool database

	Creating a Package
	Pads

	Package outline

	Assembly outline

	Silkscreen

	Courtyard

	Contribute to the Pool
	Using the GitHub integration.

Advanced Topics:

	Building on Windows

	Building on Linux

	Building on FreeBSD

	Parameter Programs

	Theory of Operation

	CLI usage

	Python module

	File versions

Why another EDA package

So you may be wondering why I started horizon EDA back in 2016, given
that KiCad was a thing at that time.

Let’s get started with a quote from Tom Hausherr: PCB Design Perfection Starts in the CAD Library [https://www.innofour.com/3783/news/literature/pcb-design-perfection-starts-in-the-cad-library/pcb-design-perfection-starts-in-the-cad-library-part-1]

[…] PCB design perfection starts in the CAD library.

This also applies to EDA software as in a schematic / PCB design tool
can only be as good its library structure. Since the definition of
library items such as symbols packages is the very foundation of any
EDA software, changing these definitions is next-to-impossible without
significant changes to almost all other parts of the application.
Having a certain library structure in place also thus guides any further
development on that EDA application.

Having used KiCad for small
and medium-sized projects, my biggest pain points were the library
lacking a concept of orderable parts without duplicating the symbol for
each part and the schematic editor not knowing about nets. KiCad’s board
editor, while being quite good as a layout tool was lacking expressive
design rules. Especially the first and second point didn’t seem easy to
alleviate without major changes that would have involved lots of
discussion since these would be breaking changes.

That made me start thinking how I’d design an EDA tool that meets my
wishes and is easy enough to implement from scratch as a one man show
and provides a clean-slate playground for experimentation.

At the very core of these thoughts was to keep schematic and netlist
representation of a design separate to allow for non-schematic based
workflows such a interconnectivity tables. That lead to the decision to
define pins and their direction in what’s called a Unit and not in the symbol as it’s common
among many other EDA packages. This also makes it possible to have
multiple symbols representing the same thing (such as a resistor)
without any effect on the netlist. Apart from name and direction, a pin
as it’s defined in a Unit can also have multiple alternate names to
specify multiple pin functions as they’re commonly available on MCUs
and FPGAs.

To define the netlist representation of an actual part, units are
referenced by what’s called an Entity. This reference is called Gate.
For simple parts, an entity references just a single Unit that includes
all pins. For some parts it makes sense to have more gates.

Parts that include multiple instances of the same functionality such as
quad opamps will then reference the opamp unit 4 times as well as a
unit for power supply.

On the board side of things, a packages are defined as in pretty much
every EDA package out there - pads and graphical items such as
silkscreen, reference designator and assembly outline. Pads however are
defined by a padstack describing copper, soldermask and other layers in
terms of shapes and polygons. This greatly facilitates odd-shaped pads
as they can be drawn as-is without resorting to hacks such as using
multiple pads to make up one actual pad. To avoid having a custom-drawn
padstack for every pad size, padstacks are usually accompanied by a
short script written in a custom stack-based language to adjust their
size as well as other properties such as corner radius or solder mask
expansion.

The pads of a package are mapped to the pins defined in the units
referenced by an entity in what’s called a Part. In order to mapped to
something orderable, Parts have fields for the manufacturer name and
the manufacturer’s part number (MPN) among other details such as
datasheet link or description.

All aforementioned references between items (such as entities
referencing units) are by UUIDs. In Horizon EDA, all items get assigned
an immutable UUID at time of their creation. This UUID is then used by
other items to reference this item.

To wrap up this introduction:

My biggest weakness is that i will eventually turn any arbitrary
electronics project into an excuse to write EDA software (and vice
versa).

(Based on https://twitter.com/mycoliza/status/824809235632447492)

Next: Feature Overview

Feature overview

Sane and simple part management

Easily manage parts, packages and symbols with the pool manager (also see What is a Pool?):

[image: _images/pool-mgr.png]
Assign pins to pads in the part editor:

[image: _images/part-editor.png]

Easy part creation

Simply add pins as they’re listed in the datasheet:

[image: _images/part-wiz-pads.png]
Horizon also ships with script templates for importing industry-standard
formats like IBIS saving you the tedious work of typing what’s in the
datasheet.

Easy package creation

Get a head start on creating packages by choosing from over 20
IPC-compliant footprint presets:

[image: _images/fp-gen.png]
Importing KiCad footprints is supported as well.

Loves beginners and power users alike

Just press the spacebar and get a list of all the actions you can perform. These actions can be bound to customizible single key shortcuts or to vim-like multi key sequences.

[image: _images/spacebar_board.gif]

A schematic editor that knows what you’re doing

Schematics aren’t just about lines and labels. Horizon’s schematic
editor knows about nets and asks you when merging them:

[image: _images/net_merge.png]
It places junctions where they should be:

[image: _images/net.gif]
It also reorients texts automatically, so you don’t end up with
hard-to-read reference designators:

[image: _images/text-align.png]
Buses aren’t foreign to horizon either:

[image: _images/buses.png]

Interactive router with online DRC

By using the interactive router originally developed for KiCad, routing
tracks becomes a breeze. Of course, it respects your design rules.
Routing differential pairs is supported as well.

[image: _images/routing.png]

Powerful rules

With powerful and flexible rules, horizon can check and adjust your
design to meet its constraints:

[image: _images/rules.png]
If something doesn’t meet your rules, horizon exactly tells what’s wrong
in which place:

[image: _images/drc.png]
Multithreaded DRC makes use of all CPU cores:

[image: _images/drc-mt.png]

Interactive length tuning

Interactively measure and tune individual tracks, differential pairs or
buses:

[image: _images/length-tuning.png]

Parametric Search

Parametric part search helps you to quickly find passives:

[image: _images/param.png]

Stock information

Real-time stock information powered by Kitspace’s partinfo [https://github.com/kitspace/partinfo]:

[image: _images/partinfo.png]

Smart Head-up Display

Instantly know what you’re looking at with direct link to datasheets:

[image: _images/hud.png]
Measures pad distance and much more:

[image: _images/hud2.png]

Industry-standard fabrication outputs

When your design is ready for fabrication, simply export
industry-standard RS-274X gerber and NC-Drill files:

[image: _images/fab-out.png]

Mechanical CAD integration

Extend packages into the 3rd dimension by adding a 3D model in
industry-standard STEP format:

[image: _images/3d-pkg.png]
Look at your board as if you were holding it in your hands to make sure
everything fits as intended:

[image: _images/3d.png]
When the design is done, export the board and all models as STEP file
for use in mechanical CAD:

[image: _images/mcad.png]

Painless panelisation

Easily arrange multiple copies of one board or multiple boards on one
panel to save money when ordering small PCBs:

[image: _images/panel.png]
All boards on a panel are linked to the original design, so they’ll
update when the the original design changes.

Versatile input device handling

With Horizon EDA, you can make best use of modern laptop’s pointing
devices. Apart from pixel-precision zooming and panning using
touchpads or trackpoints, you can directly manipulate 2D and 3D views
using touchscreen gestures such as pinch-to-zoom.

Make it yours

Decoration affects people, and people are different – do your own thing or select from the existing color schemes.

[image: _images/colorscheme1.png]
[image: _images/colorscheme2.png]
[image: _images/colorscheme3.png]
[image: _images/colorscheme4.png]
[image: _images/colorscheme5.png]
Keyboard shortcuts are fully customizable as well.

There’s much more

	OpenGL-accelerated rendering

	Undo/redo

	Copy/paste, even between instances

	Filled planes

	Arbitrary pad shapes

	Import DXF Artwork

	Export a Bill of Materials (BOM)

	Export pick&place files

Non-Goals

To limit the project’s focus, some things are explicitly out of scope.

Autorouter

Writing a good autorouter is a lot of work that’s more well spent on
other aspects of the application as experience has show that an
autorouter is rarely useful for small to medium-sized boards.

Simulation

Schematic design for PCBs and schematic design for SPICE-type
simulation are very different as in that schematics for simulation will
often simplify aspects of the real world such as replacing an ADC input
with it’s equivalent circuit. On a personal side I’m perfectly happy
with LTSpice in terms of user interface and SPICE core and don’t see much
scope for new developments in that space.

Raytracer

Other EDA applications recently gained a custom raytracer for rendering
pretty 3D visualisations of circuit boards. For horizon that’s out of
scope as the OpenGL-based 3D view is pretty enough for checking for the
board for issues such as forgotten solder mask and getting an idea of
what it’ll look like assembled. Any more pretty visualisation is best
taken care of by exporting to 3D modelling software such as blender.

On File formats

Many people complain that there’s no commonly agreed on standard format
for schematics and boards in the industry. The file formats for these
are application files formats, meaning that they’ll need to support
each and every knob and button the application has. Adopting another
application’s file format for horzion EDA would therefore result in
horizon EDA being a bad clone of the other application.

JSON has been chosen as a serialization format as it directly maps to
common data structures such as maps and arrays (opposed to XML) and is
easily manipulated in almost every environment.

Next: Installation

Made with Horizon EDA

This list of projects made with Horizon EDA. Open a Pull request [https://github.com/horizon-eda/horizon-docs/pulls] if you want to see your project on this page.

X-Band Transmitter

Repository [https://github.com/carrotIndustries/x-band-tx/]

[image: _images/x-band-tx.png]

Hubble (SFP Multitool)

Repository [https://github.com/carrotIndustries/hubble/]

[image: _images/hubble.png]

Fuse board of the Formula Student Racecar “eSleek19” of DHBW Engineering Stuttgart e.V.

[image: _images/dhbw-fuse-brd.jpg]

Installation

So you wanna give horizon a test drive? Great! Here’s how.

Stable release

A known-good snapshot from ongoing development.

Windows

Download and run the MSI installer from GitHub releases [https://github.com/horizon-eda/horizon/releases].

Linux

Keep in mind that binary packages provided by your distribution might be out of date.

Flatpak

Get the latest stable release from Flathub [https://flathub.org/apps/details/org.horizon_eda.HorizonEDA].

Debian, Ubuntu

Debian builds are hosted on the Selfnet mirror [https://mirror.selfnet.de/horizon-eda/].

To add the repository, first download the GPG key [https://horizon-eda.org/horizon-eda-debian.gpg] and save it somewhere, for example in /usr/local/share/keyrings.

Then add this line to /etc/apt/sources.list or a new file in /etc/apt/sources.list.d/, replacing <distro> with either ubuntu or debian and <release> with the release name you’re running.

See the directory listing [https://mirror.selfnet.de/horizon-eda/] for the list of currently supported distributions/releases.

deb [signed-by=/usr/local/share/keyrings/horizon-eda-debian.gpg] https://mirror.selfnet.de/horizon-eda/<distro>-<release>/ <release> main

sudo apt-get install horizon-eda-upstream

Arch Linux

For Arch Linux, there’s an AUR package [https://aur.archlinux.org/packages/horizon-eda].

NixOS

Horizon EDA is packaged for NixOS [https://github.com/NixOS/nixpkgs/blob/master/pkgs/applications/science/electronics/horizon-eda/default.nix].

nix-env -iA horizon-eda

FreeBSD

Horizon EDA is available in the FreeBSD ports [https://www.freshports.org/cad/horizon-eda/].

sudo pkg install horizon-eda

Build from source

If you want to compile it yourself, download the source tarball from
GitHub releases [https://github.com/horizon-eda/horizon/releases] and follow the instructions in Building on Linux.

Development version

Usually works, but might break occasionally, so use at your own risk.
Recommended if you want to get the latest in features and bug fixes.

Windows

Grab the latest build from the Selfnet mirror [https://mirror.selfnet.de/horizon-eda/win64-ci/]
and unzip it somewhere. Note that these are 64bit binaries. The
download URL is also shown on GitHub Actions.

Linux

Clone the repository and see Building on Linux for
instructions on how to build horizon on Linux.

FreeBSD

Clone the repository and see Building on FreeBSD for
instructions on how to build horizon on FreeBSD.

Next: Setup a pool

Setting up a pool

There are two ways of setting up a pool. If you are familiar with the version control system git and want to be in direct control of your repository you can use the git workflow below, if not, just use the pool manager.

Git

If you’re familiar with git, just clone clone
horizon-pool [https://github.com/horizon-eda/horizon-pool/]
somewhere and you’re good to go. You’re supposed to use git to keep your
local copy up to date and submit new parts.

Pool manager

Don’t know how to git? No problem! Double-click horizon-eda.exe or
launch ./horizon-eda from your shell and click on ‘Download…’ to
download the pool. The default pool horizon-eda/horizon-pool is
the one you want to use. The pool manager will assist you in keeping
your pool up-to-date, see the “Remote” tab. It will also assist you by
creating a fork, branches, commits and pull requests on your behalf so
you can contribute to the pool without any git knowledge.

Next: Create a new Project

Create a new Project

When you start Horizon EDA you should see a window like this one

[image: _images/prj-mgr.png]
Make sure you have a pool set up and added

Click the menu icon in the top right corner and open the
preferences dialog. In the Pool section selected the pool you want to use for your project. If you don’t have a pool here you can open a pools pool.json by clicking on “Open…” in the main window. When you’re done the
preferences dialog should look like this:

[image: _images/pool-prefs.png]
Now, hit “New…” and then “Project” to create a new project.

In the Project Dialogue Window you can select a project name and a location where you want to store the project folder. Additionally you can change the active pool:

[image: _images/project-dialogue.png]
In the Project manager window that opens now, you can create a Schematic, a Board, Browse for Parts or Manage the Pool Cache.

[image: _images/project-manager.png]
The Pool Cache stores a copy of all parts that you used in you project and helps you to protect your projects from outside changes (e.g. by updates in the Pool). When you want to update the parts, or remove unused parts you can do so in the Pool Cache Window.

Next: Draw a Schematic

Draw a Schematic

In the Project Manager click on the Top Schematic button, to open the Schematic editor:

[image: _images/project-menu-select-top-schematic.png]

Placing Parts

You can then start placing parts by clicking the “Place Part” button in the top bar, or by simply typing p p (remember it as “Place Part”). This opens the Part Browser, where you can search your whole pool for the Parts you need and place them on the schematic.

[image: _images/part-browser.png]

Connecting Parts

Once you placed parts you can activate the “Draw net line” tool by typing n and drawing the connections. You can also simply drag out a pin and beginn connecting pins:

[image: _images/draw-net.gif]

Basic Movement

You can move parts and nets by selecting them and typing m or by using the ←/↑/↓/→ arrow keys. Rotate with r and mirror with e

If you forget any of these keys, just press Spacebar to open the Spacebar Menu and search for the command you are looking for.

Power Nets

Because Circuits make much more sense if you use power nets you can create new power nets by clicking on the entry in the application menu:

[image: _images/schematic-powernets-menu.png]
In the window that pops up press the “Add power net” button, give the net a name and select a symbol style.

Place power nets with the “Place power symbol” Tool (type p o).

Annotation

Run the Annotation Tool to give all un-annotated parts (signified by the “?” in their reference designator) a propper number. So we go from this:

[image: _images/annotation.png]
to this:

[image: _images/annotation-after.png]
Once you are done, click on “Save” so you can start to layout the schematic you just created.

Next: Create a Board

Create a Board

Open the board editor from the Project manager.

[image: _images/project-menu-select-board.png]

Draw a Board Outline

Draw a outline by first selecting the “Outline” Layer in the Layers Panel and then selecting the “Draw polygon rectangle” Tool by typing d Y (or use the Spacebar menu):

[image: _images/outline.png]

Place the Packages

Place packages on the board using by typing p p (this time it stands for “Place Package”). If you still have the Schematic Editor open you can also select a Symbol and use the “Place on Board” Tool by clicking it’s button in the top bar.

If you select Parts in the Schematic Editor they will also be highlighted in the Board Editor. If you change something in the Schematic Editor bring the changes from the schematic to the board, by saving the schematic and clicking ‘reload netlist’ in the board editor.

[image: _images/place-parts.png]
If you want to place a part on the bottom of the board, press e to flip it to the bottom side. If you are working a lot on the bottom you can use the “View bottom” tool to flip the whole board around.

Add Planes

If you want to use a Ground Plane now would be a good time to add it:

	Select the layer you want to have the plane on (Top- or Bottom-Copper)

	Draw a polygon rectangle by typing d Y

	Right-Click one of the Edges of the newly added polygon and select “Add Plane”

	In the Window that pops up select the GND net (if it is not there you didn’t add the power net in the Schematic)

[image: _images/add-plane.png]
If the solid filled color of the plane annoys you, you can switch the display style to something else by clicking onto the colored square left of the layer:

[image: _images/plane-style.gif]

Route the Nets

To route tracks between the parts you connected in the Schematic, type x and drag from any pin that starts an airwire:

 Example project

Example project

Instead of starting your own project, you can also download the design
files for an X-Band
transmitter [https://github.com/carrotIndustries/x-band-tx]. To open
it, point the project manager to the ddstx.hprj file. Make sure that
you extract all the files contained in that repository.

Next: Basic Editor Usage: Tools

 Digi-Key API integration

Digi-Key API integration

For displaying stock information in part browsers, Horizon EDA can make
use of Digi-Key’s API. To use it, you need to register an application
with Digi-Key.

Registering

Go to developer.digikey.com/teams [https://developer.digikey.com/teams] and create an organisation,
the name doesn’t matter.

[image: _images/digikey-org.png]
With the organisation in place, click on “Production Apps” in the
organisations overview and create a new production app. Set
https://horizon-eda.org/oauth.html as the OAuth Callback. Name and
description don’t matter. Select the “Product Information” product and
create the app.

[image: _images/digikey-app-create.png]
Click on the newly-created app and paste the Client ID and Secret into
the preferences.

[image: _images/digikey-app-secrets.png]
[image: _images/digikey-prefs.png]

Logging in

Finally, you need to log in to get the tokens required to access the
API. Do so by clicking the “Log in” button and following the
instructions in the window that opens.

 Tools

Tools

In order to provide a unified user experience and enable code reuse, the
editors for symbols, schematic, padstack, package and board are all
based on the interactive manipulator.

How to select the right tool

To edit the things on screen, use the tools. Tools can be started in
multiple ways:

	By typing in the tool’s key sequence. Available key sequences are
listed by clicking the help button in the top right corner or typing
?.

	By using the Spacebar Menu.
Just start typing for the tool you’re looking for or browse through
the list.

	By right clicking an object. This will bring up context menu listing
all the tools relevant to what’s selected.

	By pressing one of the dedicated buttons in the top bar.

After having started a tool, it receives all keyboard and mouse input, till the tool is finished or you end it by pressing Esc.
Look at the bar that appeared at the bottom of the canvas to see what
pressing keys will to in this particular tool.

Next: Basic Navigation: Spacebar Menu

 Spacebar Menu

Spacebar Menu

Horizon’s Editors rely on fast and intuitive single key shortcuts and key sequences alike. While this is very powerful for those who use it daily, it could be cumbersome for those who just started out or have long periods passing between each of their electronics projects.

[image: _images/spacebar_schematic.gif]
In order to make the transition between beginner and power user an easy one, Horizon EDA has a Spacebar Menu, that (hence the name) pops up after you pressed Spacebar. In this menu all Tools you can select within the Editor’s Canvas are listed. To help you getting faster the shortcuts and key sequences are listed alongside the tools. So if you find yourself in the position of having to go to the space bar menu over and over again, you can easily speed up things, by using the short cuts.

You can easily customize these shortcuts in the preferences window.

Next: Grid

 Grid

Grid

All movments in Horizon happen on the grid. By holding Alt you get a finer grid (by a factor of 10).

You can change the size of the grid by changing the value in the numeric field on the top left of the window. Note that depending on a zoom level your grid may be resized by factors of two.

[image: _images/grid.gif]
You can enter basic math operations into any numeric field in horizon, this makes it easy to divide a value by two, multiplying something by a certain factor, or adding a value to a coordinate to create a fixed offset. For more details, see Numeric entries.

You can change the appearance of the grids and the cursor in the Preferences:

[image: _images/board-appearance.png]
Next: Drawing

 Numeric Entries

Numeric Entries

All numeric entries in horizon support basic two-operand math as well as some other goodies.

They look like these:

[image: _images/entry.png]
Both point and comma are recognized as a decimal separator regardless of locale settings. By default all numbers are treated as millimeters. Suffixing a number with an i or in will treat it as inches. Use mi or mil to convert from thous.

Additionally, two-operand infix math is supported, so you can to this:

	Addition: 1+2

	Subtraction: 1-2

	Multiplication: 3*2

	Division: 3/2

	Average \(\frac{ a+b }{2}\): 3|2

	Adding mm and inch: 1in+2mm

Right-click the entry to change the increment used by the +/− buttons:

[image: _images/incr-set.png]

 Drawing

Drawing

The different Editors in Horizon EDA share a set of different Drawing tools. Here you can see the ones available in the Board Editor:

[image: _images/drawing-commands.png]
The drawing tools are mainly split in three categories:

	lines

	polygons

	special (like draw track, draw dimension etc.)

Lines are usually used for everything visual (e.g. Silkscreens) while polygones are used for all things where it matters that the thing you draw results in a closed shape (pads, board outlines, package assembly and courtyard layers, etc.)

Draw Line

[image: _images/draw-line.gif]
To draw a line simply select the “Draw line” Action in the spacebar menu or type the key sequence d l (think: “draw line”) – once you click anywhere, you start the first point of the line right at the place where your manipulator was. You might notice that the point snaps to the grid. If you want a finer grid hold the Alt key down while placing points. Left mouse button places more and more points, while the right mouse button (or pressing Esc) will finish the lines.

You might also have noticed the Action Bar at the left bottom of the editor window:

[image: _images/draw-line-action-bar.png]
The Action bar will show additional keys you can press to change the behaviour of the tool. In this case you could press w to change the width of the stroke or / to restrict the movment of the manipulator to one direction.

Draw Line Rectangle

[image: _images/draw-line-rectangle.gif]
To save your time, there is also a “Draw line rectangle” Action, which can also be invoked by typing d L. Per default you first set the rectangles center point and than one of the corner points. By pressing c you can change this behaviour and set two diagonally opposed corner points instead.

Draw Arc

[image: _images/draw-arc.gif]
The “Draw arc” tool is straightforward it draws line arcs by setting three points (in this order): start point, end point and the center point. You can also use the key sequence d a to start the tool. If you want your arc to flip direction, press e before putting down the center point.

Draw Polygon

[image: _images/draw_polygon_with_arc.gif]
When drawing polygons with d y you can set a series of points by clicking, until you either press Esc or use the right mouse button. You can make the next edge of the polygon an arc by pressing a. Just like with the “Draw Arc” tool set the endpoint first and the center point after. Before setting the center point you can flip the arc direction with e and finally you set the end point of the arc.

Draw Polygon Rectangle

 Selection

Selection

Selection throughout the Editors of Horizon EDA is very straightforward and there are no surprises here. No matter how basic it seems, the different modes and filters could save you quite some time.

Basics

[image: _images/selection.gif]
Initially, the “hover select” mode is active. It simply selects the
smallest object under the cursor. Leftclick or drag with the clicked button to select objects permanently. Hit Esc for returning to hover select mode.

If you want to select multiple things by clicking keep Hit Ctrl pressed while you click on things – this also works to deselect things you accidentally selected while dragging a selection box.

Selection Mode

[image: _images/selection-mode.gif]
You can change how dragging the left mouse button behaves in the lower left corner of the editor window. Available are three different modes (Box, Lasso, Paint) with four different selection characteristics (Auto, Include Origin, Touch Box, Include Box).

Selection Filter

[image: _images/selection-filter.gif]
If you have to select many things, it can sometimes be handy to only select certain classes of objects. This is what the selection filter is for. You can open it up via the spacebar menu or by pressing Ctrl+i

Double click on an item to select only that item. Click on the check mark button on the top left to select all items.

Next: Moving and the interactive Manipulator

 Moving and the interactive manipulator

Moving and the interactive manipulator

Move with Mouse

You can move parts and nets by selecting them and typing m, press Alt to move on a fine grid. The movment of the selected object has its origin (or pivot) point right at the spot where the interactive manipulator was, when you started the move tool.

This can be used to our advantage, because it allows us to move objects that have been placed on a finer grid without snapping them back to the coarse grid.

Move with Keyboard

By using the ←/↑/↓/→ arrow keys you can move the selected object one grid step into the desired direction. If you press Alt at the same time you will move the part on the fine grid (1/10 of the original grid). Because this is also a tool, you can cancel it by pressing Esc and finish it by pressing Enter or clicking onto a empty spot.

Move Exactly

The “Move exactly” tool allows you to enter numbers to move an object by an exact number of units (e.g. 1 mm) into the desired direction. You can start the tool by pressing M

Flip

You can flip symbols or parts by pressing e. If you use this on the board editor, it is the same as flipping the part onto the other side

Rotate

You can rotate objects by 90° if you press r or select the “rotate” tool. If you like to rotate a object by something else (e.g. 30° or 45°) use the “Rotate arbitrary” tool. The pivot point of the rotation is always the location of the interactive manipulator, so make sure it is at the right spot

 Layers

Layers

Board, package and padstack editor use the widget shown below to specify how layers are displayed.

[image: _images/layers.png]
The selected layer is called the “work layer” and is always visible and drawn on top of all other layers. Use Page up/down to move the work layer to the next or previous layer.
Pressing 1 selects the “Top Copper” layer, 2 selects the “Bottom Copper” layer, 3 … 0 select inner layers if present.

Clicking on the eye toggles a layer’s visibility. Keep in mind that the work layer is always visible even if it’s set to be invisible.

Clicking on the colored box cycles through a layer’s display modes:

	Solid color: Layer is drawn with outlines and fill, overlapping filled objects on the same layer will appear brighter.

	Solid color with black border: Layer is drawn just filled, overlapping objects look the same as non-overlapping ones.

	Black with colored border: Layer is drawn just with outlines.

	Striped: Same as first, but areas are striped rather than filled.

 Tips and Tricks

Tips and Tricks

There are quite a few features that make day-to-day usage easier but
might not be immediately obvious.

Quickly start tracks an net lines

Drag away from a pad or pin to start drawing a track or a net line.

Duplicating objects

Hold down Ctrl and drag selected objects to duplicate them.

Panning without a middle mouse button

Drag with the left mouse button while holding down shift to pan the viewport.

Versatile length input

All input fields for lengths support more than just typing in
millimeters. See Numeric Entries for what else they can do.

Sorting pool items by modification time

Right click the column headers in any pool browser to sort most recently modified items first:

[image: _images/sort-mtime.png]

 Schematic Editor

Schematic Editor

To launch the schematic editor click on “Top Schematic” in the project
manager.

Placing parts

To place parts, open the part browser either by typing p p (place part) or clicking on the corresponding icon in the project manager. Once a part has been placed, it can be replaced by a part of the same entity by selecting it and using the “Assign part” button in the part browser window.

See Project pool for how to get updated items from pools.

Nets and net segments

Unlike some other schematic entry tools, horizon’s actually knows about
nets and isn’t just about drawing lines that will eventually be
transformed into nets when generating the netlist. A net may be
represented by one or more net segment. A net segment is a set of net
lines, junctions, pins, etc. all connected by net lines. Since the
editor tracks which net segments belongs to which net, it provides
feedback when an operation is about to merge two nets.

So when you see a net in the property editor after selecting a net line,
the net in the property editors is the “whole” net and not just the net
segment. That’s why renaming a net doesn’t change connectivity. To
connect the pins on a net segment to a different net, use the “Move net
segment to other/new net” tool.

A net label just displays the name of the net it is connected to and
doens’t set net names. To alert you about inconsistencies in the
schematic that could result in unexpected connectivity, the schematic
editor places warnings on the offending items.

Power symbols

The easiest way of creating a power net is using the “Manage Power Nets”
Tool available from the hamburger menu. Then, use the tool “place power
symbol”, to place a power symbol for this net. Power symbols force their
net on the connected net segment. You can select from three styles of
Power symbols in the aforementioned tool. The Antenna and Dot symbols
can be placed either pointing up or down. The GND symbol can only point
downwards.

Buses

To group related nets, use Buses. After creating a bus, add members to
it. You can either assign existing nets or automatically name the newly
created net by clicking on the arrow button next to it.

Diffpairs

To create a differential pair, select the two nets you want to become a
pair and run the “Set diff. pair” tool. You can also select one net and
you’ll be asked for the other net. To decouple the nets, use the “Clear
diff. pair” tool. It’s recommended to assign both nets a netclass such
as “100diff” so you can match them in the rules.

To board

To facilitate placing packages on the board, simply select the
corresponding symbols and activate the “place on board” action by pressing p b.This will switch to the board
editor and launch the “place package” tool with the packages for the
selected symbols. Note that you may need to reload the netlist in the
board editor before doing so to make the board editor pick up new
components.

Hierarchy

Similar to other schematic entry tools, hierarchical schematics are made up of blocks that can be instantiated. To create a new block, open the sheets and blocks dialog by clicking on the three dots in the sheet list.

[image: _images/sheets-blocks.png]

In that dialog, click on the plus icon in the block list to create a new one.

[image: _images/sheets-blocks-dia.png]

All blocks, regardless of whether they’re instantiated or not, appear below the sheets in the sheet list. Select a block to edit its symbol. Clicking on the insert icon next to a block instantiates it on the current sheet.

Connectivity to the rest of the schematic can be established either through ports or power nets. Power nets are global to the entire schematic. Since it’s good practice to name ports identical to nets, ports aren’t separate objects in Horizon EDA. Instead, a port is defined by setting the “is port” property on an existing net. This can be done either by toggling the appropriate switch in the properties of a net in the right sidebar or through the port nets dialog.

Blocks can be edited either inside or outside of the hierarchy. To edit a block within the hierarchy, double-click any of its placed block symbols or select one of its sheets in the top part of the sheet and block list. Changes to reference designators or “do not populate” flags are specific to the selected instance.

When selecting a sheet of a block directly from the list of blocks in the lower part of the sheet and block list, reference designators and “do not populate” can’t be modified as they’re instance-specific. Aside from that, there’s no difference between editing a block inside or outside of the hierarchy. The current mode is shown in the bar that sits above the schematic viewport.

Deleting a block won’t delete its schematic and block from disk. Right now, there isn’t any way to do so, so you’ll manually need to delete the block from the blocks directory in the project if you want it to be gone.

Net ties

Use net ties to electrically connect two nets. One use case could be connecting analog and digital ground nets.

To create a net tie, select two junctions, one of each net, that should be tied and invoke the “tie nets” tool:

[image: _images/tie-nets.png]

The net that’s listed first (AGND in this case) is the primary net of a net tie. See Board Net ties for what that means and how to represent net ties on the board. The “flip net tie” tool swaps primary and secondary net of a net tie.

Screenshots

[image: imp sch]

 Board Editor

Board Editor

To launch the schematic editor click on “Board” in the project manager.

The board editor keeps an internal copy of the netlist. To update the
netlist, click “Save” in the schematic editor for writing the netlist to
disk, then click on ’reload netlist’ or re-open the board editor or use the action “Save and reload netlist” in the the schematic editor.

Planes

For adding planes, first draw a polygon of the desired shape in a copper
layer. Then use the “Add plane” tool to assign it a plane. Planes with
lower fill order will get filled first. To override the connection style (solid or thermal relief), create a Thermal rule.

Vias

To place a via while routing, press v. The “Layer pairs” rule defines which layer the router switches to. To change the size of vias, define a matching via rule.

You can also place vias not connected to any track with the “Place via” tool.

Importing logos

The preferred way to import logos and other artwork into the board editor by means of the DXF import tool. Since Horizon EDA doesn’t support bezier curves, convert these to lines first. Inkscape’s “Modify Path/Flatten Beziers” extension works great for this. If you require filled polygons, use the “Line loop to polygon tool” to convert line loops to polygons. Use the “Scale” tool to adjust the imported logo to the size you need.

Board outline

Define the board outline by drawing polygons on the Outline layer. The board must be representable by a single polygon with zero or more holes, that means:

	There must one polygon that encloses all others

	These other polygons are holes

	Hole polygons must not intersect or touch each other

The “Outline” rule checks that these requirements are met. Do not use arcs or lines on the outline layer. Put any other outline-related information such as indications for v-scores on the “Outline Notes” layer. The Gerber export merges the “Outline” and “Outline Notes” laters.

Reconnecting tracks without a net

For a track to be assigned a net, is has to be connected to a pad or a via either directly or indirectly. If that’s not the case, tracks are assigned to no net and turn orange. Use the “draw track” tool to reconnect the track to a net.

Diffpairs

To create a diffpair see Schematic Diffpairs . Before
routing a diffpair, create a diffpair rule specifying track width and
gap. To route a diffpair, use the “Route diff. pair” tool.

Nets window

You can open the nets window from the “View & Selection” menu in the bottom bar or by searching for it in the spacebar menu.

Hide Airwires

Uncheck the checkbox in the airwires column to hide the airwires of a net. You can also select more than one net and use the context menu to turn off or on airwires for multiple nets at once.

[image: _images/nets.png]

Recolor nets

Right click on one more selected nets to open the context and assign a specific color to nets.

Panelisation

For making best use of the available board space, Horizon EDA supports panelisation. Rather than copy/pasting a board into another one, which complicates last-minute changes, a board can reference other boards.

Panelising an existing board in Horizon EDA is a simple multi-step process:

	Create a new empty project and open the board.

	Use the “Manage included boards” tool to load the board(s) to be placed on the panel.

	Place the included boards using the “Place board panel” tool.

The boards can then be arranged as one object each without the possibility of unintentionally modifying it. To update the included boards, either use the reload button in the “Manage included boards” tool or reopen the project.

For making it easier to draw the panel outline, the outline of included boards can be extracted using the “Smash panel outline” tool.

Shorted pads

When using zero-ohm resistors or other components for connectivity, there’s still an airwire across the component since Horizon EDA isn’t aware that the part is a short circuit.

Create a “Shorted pads” rule to specify that the pads of a part are electrically connected.

[image: _images/shorted-pads.png]

Net ties

Once a net tie has been defined on the Schematic, it can be added to the board using the “Draw net tie tool”. A net tie on the board behaves similar to a track of the primary net and are treated as such by track width, copper clearance and other rules. Since net ties go from junction to junction, they can be joined with other tracks.

The “Net ties” rule checks that all net ties that are defined on the schematic are drawn on the board and connect to the correct nets. The copper clearance checks ignore the clearance violation caused by the net tie, but still flag clearance violations caused by other objects of the net.

Offset pad connection

For complex-shaped pads, one might want to connect a track to a specific position in the pad rather than to its origin. Use the “Move track connection” tool to move the end of a track that’s connected to a pad.

[image: _images/offset-connection.png]
Keep in mind that tools based on the KiCad router such as “Route track” or “Drag track” aren’t aware of this and will break the pad-track connection.

Screenshot

[image: _images/imp-brd.png]

 Copying layout and placement

Copying layout and placement

Motivation

Often times, your design includes similar-but-not-identical sections
such as voltage regulators. Wouldn’t it be nice if you’d only had to do
layout and placement once and then copy it to the other instances?
Horzion EDA lets you do just that in a simple two-step process.

Groups & Tags

For this feature to work, you’ll first need to tell horizon EDA how the
components fit together. This is accomplished by assigning groups and
tags to components. Each section, i.e. all components associated with
one voltage regulator, get assigned one group. To do so, select all
symbols of one section and use the tool “Set new group” to assign all of
them to a new group. For making groups and tags visible on the
schematic, use the “Toggle group & tag visibility”. A components group
and tag will then show up below the reference designator.

To tell horizon EDA the matching components in each group, these get
assigned identical tags. Since a newly-placed component will already be
assigned a unique tag and groups and tags get preserved on copy/paste
other instances of the same circuit will likely have the appropriate
tags already set. To change the tag on a component, use the “Set tag”
tool.

When you’re done, the schematic should roughly look like this (with the
boxes added for clarification). All components inside a yellow box
belong to the same group, all inside a red box belong to the same tag.

[image: _images/groups-tags.png]
You may use the “Highlight group/tag” action to make sure that you got
the assignments right.

Board

Place and route any group as usual.

Copy placement

For each group, place the package you’d like the other packages to be
referenced to at the desired position and place all other packages
anywhere. Then, select all packages of the group that you’d like to
apply the placement to and start the “Copy placement” tool. Click on the
reference package (any pad or centroid) in the already placed group and
all selected packages will be placed accordingly.

Copy tracks

Select all tracks (other objects will be ignored) you want to copy in
the routed group, start the “Copy tracks” tool and click on any package
(any pad or centroid) in the destination group.

 Backannotating connections

Backannotating connections

Sometimes, you may want to connect component pins based on their
location on the board, such as connectors or FPGA IO pins. Wouldn’t it
be nice if you could define these connections directly in the board
editor without going back and forth between board and schematic for
every connection? With horizon EDA, you can!

How To

Use the tool “Draw connection line” to connect pads or junctions as
desired. Then, use “Backannotate connection lines” to send these
connections over to the schematic editor. The newly created connections
will appear as net stubs. After saving the schematic and reloading the
netlist in the board edtior, the connection lines will automatically be
replaced by airwires.

Limitations

Since this feature hasn’t been there for very long, some things are
still unsupported:

	Can’t connect two existing nets

	Chaining connection lines (connecting two lines to one pad/junction) will not yield the expected result

 Rules

Rules

Horizon uses rules for specifying constraints for DRC as well as input
for various tools such as the interactive router. Rules are evaluated
top to bottom and the first rule matching all criteria will be applied.
So it’s up to you to make sure that rules are ordered from more specific
to less specific. It’s always a good idea to have a catchall rule at the
very bottom.

 Why a Pool?

Why a Pool?

What’s a pool

So what’s all this Pool stuff anyhow? Many EDA packages organize
packages, symbols and the like in libraries. These are often messy
and version-controlling these is difficult since many independent
parts are put in a single file. Especially the latter often makes collaboration
difficult.

With horizon, there are no libraries. Instead all the non-project elements
(symbols, etc.) are stored in a pool. Similar to the “central library”
approach common among the more enterprisey EDA packages.

However the new thing here is, that a Part within this pool is composed of
multiple other elements, that handle different aspects of the Parts nature:

[image: _images/pool_diagramm_full.png]
For example you can define one “Quad NAND” Entity and reuse it for each new
NAND Part, without having to redefine the Gates time and time again. The Quad NAND Entity in turn is composed of multiple Single Opamp NAND Units
and one Power Unit. If you now want to make a Dual NAND Entity, you can just reuse
the already existing Units and this guarantees you consistency with the other NAND
parts in your pool.

Organisation in the file system

Each of these elements that make up a Part is stored in a single json file in the
respective directory, i.e. /symbols, /entities, /units, /parts, etc. The exact location within these directories is irrelevant, as long the json file is stored
in the correct directory: Symbols in /symbols, Units in /units and so on.
Additionally it is important for the files to end in “.json” so they can be
picked up by the pool updater. To make searching for parts more
convenient, the metadata of all json files is aggregated into a sqlite
database. This is what the ‘Update pool’ button in the Pool Manager is
for.

Naturally a pool with a focus on composition is organized using tags instead of a hierarchical system since these often lead to (unnecessary) confusion over aspects like whether to group parts by manufacturer or other attributes.

Including other pools

Apart from containing items, a pool can also include other pools to get access to their items. To include a pool, first add it in the “Pools” window available from the menu on the top right in the pool/project manager and then move it to the “Pools included” list in the “Settings” tab in the pool manager. The order of included pools becomes relevant when an item of identical type and UUID exists in multiple included pools. Items from pools that are higher up in the list take precedence over items from pools that are lower down in the list.

When a pool includes at least one pool, pool browsers show a colored box in front of items to indicate their source. Check the tooltip for the meaning of each color.

Contributing

Although you can create your own pool, you are strongly encouraged to use the pool
over at
https://github.com/horizon-eda/horizon-pool/.
To add new parts to it, simply submit a merge request. See also: Contribute to the Pool

 Elements of a Part

Elements of a Part

A final Part is composed of multiple elements, that are stored independently from each other in the Pool.

Parts

On top of pool’s structure there is the part. To avoid redundancy and alow faster
changes, a part can inherit its definition (or parts of it) from another part. This is intended to be used for groups of parts that only differ in some property like resistance or output voltage for fixed voltage regulators. Each part can
be accompanied with parametric data to make it easier to search for.
Right now, this feature is only implemented for resistors and capacitors.

In addition to it’s data the part is connected to both a Entity and a Package.
The Part stores how the pins of each Gate in the Entity map to
the pads in the Package (e.g. in the case of the NAND it would map Input A to the
corresponding Pin on a DIP 14 package).

Packages

A Package defines the footprint of a part. If the part’s manufacturer
provides a reasonable footprint recommendation, use this one. Only use
generic packages if there isn’t any. For details on packages see
Creating a Package.

Entities

An Entity is a Part’s netlist representation and consists of one or more Units.
Parts that are logically the same like different shapes of USB connectors
therefore can all share the same Entity, e.g. “USB connector with shield and ID”.
The Symbol for each Unit in the Entity can be placed independently on the schematic.

Units

A Unit actually defines a part’s logical pins. For parts that only
consist of one “gate” like a simple resistor, their entity simply
references one unit. For parts consisting of multiple “gates” like a
dual operational amplifier or a big MCU, each gate references one unit.
Having units separate from entities allows multiple entities to share
the same units. The entity for a dual logic gate thus is supposed to
reference the same unit as a quad one. Apart from a name, a pin has a
direction (for ERC) and optionally alternate pin names to deal with pins
having multiple functions as it’s common among MCUs.

Symbols

A symbol is used in the schematic to represent a unit. Contrary to other
EDA applications, a symbol just displays the pins from its unit and
doesn’t define these.

Padstacks

In horizon a pad references a padstack to determine its shape. There are
two kinds of padstacks in horizon: Global padstacks are available for
use to all packages and should cover most uses cases. In case a package
requires a specialized padstack, you can create one using the “Create
padstack for package” button in the “Packages” tab in the pool manager.

A padstack consists of these items:

	Copper

	Solder mask opening

	Paste mask

	Hole (optional)

The preferred way of defining geometry in padstacks is to use shapes as
these get translated to efficient primitives when exporting the board as
a gerber file. To suit more than one package parameters can be applied
to padstacks that alter their size. Parameters are also used to apply
application-specific global parameters like solder mask expansion and
paste mask contraction. To get an idea on how this works out in reality
take a look at the global padstacks in the pool.

To apply the parameters to the padstack’s geometry each padstack is
accompanied by a Parameter Program that takes
care of applying the parameters to the shapes.

 Project pool

Project pool

Since version 2.0, each project is accompanied by a project pool. When using a part or any other pool item for the first time, it gets copied into the project pool along with its dependencies and is kept there until explicitly updated.
Same as regular pools, project pools can include other pools. In fact, that is the way to use parts from pools in the first place.

To get an overview of items that have been copied into the project pool, go to the “Cache” tab in the project pool manager. If an item has been modified in an upstream pool, select it in the list and click on “Update from pool”. After that, reload the pool in the board/schematic editor or reopen them to get the updated items.

Over time, project pools may accumulate items that are no longer needed in the project. To get rid of them, click on “Remove unused” in the “Cache” tab in the project pool manager.

 Pool Manager

Pool Manager

The Pool Manager and Part Wizard help with managing things in the Pool
like symbols, entities and parts. You’re most likely to use the Pool
Manager for creating new parts. To open the pool manager, launch Horizon EDA and click on the recently opened pool you like to edit. If you never opened a pool before, you can manually select a pool.json you like to open or create a new one. Depending on what kind of part you want to create,
several workflows are available:

Inherting from an existing part

When the part you’re about to create already exisits in a different
variant (different value or different temperature range) but is
otherwise all identical, the new part should inherit from the existing
part. To do so, select the desired base part in the “Parts” tab and
click “Create Part from Part”. After having specified the new part’s
location, you’ll be shown the Part Editor. Uncheck the “inherit” option
for the attributes you’d like to change and save the new part.

Create part from existing Entity

This workflow is appropriate when the Entity for the new part already
exists. Resistors or LEDs in nonstandard packages are of this kind, for
example. A Part is made up from a Entity and a Package, if the Package for the Part you want to make doesn’t exist you will have to create it (see see Creating a Package).

If you have a fitting Entity and Package you can go ahead and create a Part. In the “Parts” tab, click on “Create Part” for creating the new part. Then after
specifying both Entity and Package and the Part’s location, the Part Editor opens and you can edit the part and map the Entity pins to the Package pads.

Create all-new part

Many parts such as MCUs, FPGAs, ADCs and other miracles of today’s world
require creating new units and entities. Doing so manually would be very
tedious, that’s why there’s the Part Wizard to assist you. After having
selected the part’s package (for creating packages, see Creating a Package) in the “Packages” tab, click on “Part
Wizard…” to launch it. You’ll be greeted with a list of all Pads of
the package.

Fill in the pin names according to the datasheet. Only put the pins
primary name (like PB5) on an MCU in the leftmost entry and put all
other names (like UART0_TX, TA0) space-separated in the “Alt. names”
Entry. If your part is really big (such as an FPGA or large MCU) you
may want it to appear as more than one symbol in the schematic. To do
so, select all the pads you’d like to have in the same symbol and type
in the new Gate name. In case many Pads are electrically identical (such
as many GND pads) you may group them by selecting them and clicking the
“Link Pads” button in the bottom toolbar. This way, only one Pin will be
generated for these Pads.

For really large parts with 100+ pins, putting them all in manually can
become too tedious. To get around is, the part wizard can import pin names
from a CSV or json file.

A CSV file for pin import can look like this:

1,PB0,bidirectional,Main,TXD,SDA
2,PB1,bidirectional,Main,RXD,SCL
3,TDI,input,Main
4,TDO,output,Main
5,GND,power_input,Main

The full CSV format is pad,pin,direction,gate,alt1,alt2,...

Defining the same pins in json format can be done with:

{
 "1": {"pin": "PB0", "alt": ["TXD", "SDA"], "gate":"Main"},
 "2": {"pin": "PB1", "alt": ["RXD", "SCL"], "gate":"Main"},
 "3": {"pin": "TDI", "direction": "input", "gate":"Main"},
 "4": {"pin": "TDO", "direction": "output", "gate":"Main"},
 "5": {"pin": "GND", "direction": "power_input", "gate":"Main"}
}

For both CSV and json, entries with the same pin-gate will get their
pads merged. Additional valid values for direction are open_collector,
passive and not_connected.

Reasonable sources for pin/pad name data are:

	IBIS models

	BSDL files

	PDF datasheets

Once you’re done filling in the pin names, click “Next” in the top left
corner for advancing to the next screen. Fill in the entries according
to your part. In case you’re unsure on what to put in, take a look at
existing parts in the pool. If your part is available in multiple
almost-identical variants that only differ in aspects such as
temperature range or packing option (Tape/Reel, Tube, etc.) create the
part you’re about to use. For creating the other variants, follow the
instructions in the topmost section. Take care of specifying the correct
location for units/symbols/entity and parts, so that they end in a
subdirectory of their respective directory in the pool.

For each gate, click on “Edit Symbol” for launching an interactive
manipulator to create the symbol for that unit. Use the “Map pin” tool
to place the pins in the symbol and “Draw line rectangle”/”Edit line
rectangle” for drawing the symbols body. Don’t forget to give the symbol
a meaningful name and place the “$REFDES” and “$VALUE” texts.

When you’ve drawn all the symbols an filled in all of the metadata,
click “Finish” to finally insert the part into the pool.

Where to save things

When creating new symbols, parts and the like the pool manager/part
wizard will sooner or later ask you for a file name or a directory (in
case of packages) to save the new part. Technically, the path you
specify only needs to meet two requirements:

	It needs to be in the correct top-level directory, i.e. every symbol
has to be somewhere in /symbols and so on. Padstacks specific to a
package must be placed in the package’s padstack directory.

	The file has to end in .json

To get an idea of how all this looks in practice, take a look at the
pool [https://github.com/horizon-eda/horizon-pool/]

The Pool database

The Pool keeps the metadata (filenames, UUIDs, names, etc.) in a SQLite
database to facilitate searching. Normally, the pool manager updates
the database every time a file in the pool is saved. However, if you
externally manipulate/remove files, you’ll have to click “Update
Pool” for the database to include the changes you made.

 Creating a Package

Creating a Package

A PCB layout can only be as good as the footprints it uses, that’s why
it’s important to create high-quality footprints (called packages).

As far as horizon is concerned a package consists of these things:

	The pads the part gets soldered onto

	Copper layers (top/bottom/inner)

	Holes (for TH parts)

	Solder mask opening

	Paste mask

	Package outline

	Assembly outline and reference designator

	Silkscreen graphics and text

	Courtyard outline

Pads

Each pad is defined by its padstack and parameters applied to the
padstack. For details on padstacks see here. Since the
pads are probably a package’s most important feature, it’s makes sense
to start with these. You can either place pads manually using the “Place
pad” tool or have them placed automatically according to commonly used
patterns using the “Footprint generator” dialog available from the magic wand button.
After having placed the pads, they still have their default size, which
is very likely not what you want. To fix this, select the pads you’d
like to modify and use the “Edit pad” tool to add parameters to a pad.
Depending on the selected padstack, certain parameters are understood.
The most commonly used are obviously pad width and height. Use the
checkmark button next to a parameter to apply it to all selected pads.

Package outline

The package outline is used for visualizing what the part’s outline
looks like, hence it should follow the part’s nominal dimensions. You
may use the “import DXF” tool for importing a DXF drawing obtained from
a STEP model or otherwise. Since the package outline’s purpose is purely
visual, you can use either lines or polygons. Only include pins if they
significantly contribute to the part’s appearance.

Assembly outline

The assembly outline ends up on the assembly drawing (not yet
implemented) and is intended to aid assembling and inspecting the PCA.
The assembly outline layer thus contains only these items: A polygon
indicating the part’s outline, optionally pins if they significantly
contribute to the part’s appearance and the part’s reference designator.
Opposed to the package outline, the assembly is just a rough
approximation of the part’s shape. It has to include some sort of visual
indication of the part’s pin 1 location. Use the “Draw polygon
rectangle” tool and its decoration options for drawing such outline. For
the reference designator, place a text containing “$RD” with such size,
that it fits withing the assembly outline even when being prefix + 4
digits long.

Silkscreen

The silkscreen graphics purpose is to clarify a parts location and
orientation during manual assembly and visual inspection, so it should
include some sort of pin 1 marker if the part is orientation-sensitive.
Don’t place a dot at pin 1, instead shorten/elongate the silkscreen
graphics. The recommended line with is 0.15mm. Also place a text “$RD”,
0.15mm in with on the silkscreen layer.

Courtyard

The courtyard denotes the space needed by the part that mustn’t be
occupied by other parts in order to leave enough room for assembly.
Since the size of the courtyard needs to be adjusted depending on the
users manufacturing requirements, it has to be set using a parameter
program. At 0mm courtyard expansion the courtyard outline is the
(rectangular) hull around copper pads and package outline. To create a
rectangular courtyard outline that can be parametrized, do this:

Use the “Generate courtyard” tool to generate the initial courtyard at
0mm expansion. If that doesn’t result in the desired polygon, use the
“Draw polygon rectangle” tool for drawing the initial courtyard and set
its parameter class to “courtyard” using the property editor on the
right side of the window.

Open the “Parameters” Window and click on “Insert courtyard program”. If
all goes well, this should add the courtyard program and as the
parameter “Courtyard expansion” set to 0.25mm.

 Contribute to the Pool

Contribute to the Pool

The official pool at https://github.com/horizon-eda/horizon-pool/ lives from it’s user
contributions. There are multiple ways you can help. The most obvious one is
by submitting parts you made.

To keep the pool nice an clean, only add parts you can actually buy with
their corresponding symbols, entities, etc. So don’t add some part
called 7805, instead add a MC7805BDTRKG manufactured by ON
Semiconductor. Once you created something you’d like to share, you can use the
Pool Manager to upload your creation to the offical pool:

Using the GitHub integration.

For the GitHub integration to work, the pool has to be downloaded using
the “Download…” button on the start Page of the pool manager. The pool
manager will clone the global pool into the .remote directory in
your local pool. If all goes right, you should never need to touch that
directory. Two operations are available for keeping your local copy
up-to-date and merging your parts into the global pool

Upgrade pool

This will update your copy of the global pool in the .remote
directory to the latest commit and ask you which changes you’d like to
have applied to your local pool.

Create pull request

First, add the Parts/Entities/etc. to the “items to be merged” list,
then fill in Pull Request title and body. The pool manager will
automatically add items that are needed to not break references. So if
you create an all-new Part with new Unit, Entity and Package, these will
get added to the list when you add the Part. Don’t forget to add the new
symbols. After making sure that this is what you want, click the “Create
pull request” button. You’ll be prompted for your GitHub credentials as
well as your name and email address for the commit author information.

Helping by reviewing

Adding parts is a great thing, but checking parts other people made could be a
good thing as well. More eyes that crosscheck a part against its datasheet will
decrease the chance of something that works. If you successfully produced a PCB
with certain parts on it, you can say something about solderability as well and
this is a stronger indicator, that the part has no critical mistakes.

 Building on Windows

Building on Windows

Install MSYS2

Download and run the msys2 installer from http://msys2.github.io/ I’ve
only tested with the 64bit version, 32bit should work as well (but come
on, it’s 2017…) Make sure that the path you select for installation
doesn’t contain any spaces. (Don’t blame me for that one)

Start MSYS console

Launch the Start Menu item “MSYS2 mingw 64 bit” you should be greeted
with a console window. All steps below refer to what you should type
into that window.

Install updates

Type

pacman -Syu

if it tells you to close restart msys, close the console window and
start it again. Then run pacman -Syu again.

Install dependencies

Type/paste

pacman -S mingw-w64-x86_64-gtkmm3 git base-devel \
mingw-w64-x86_64-boost mingw-w64-x86_64-curl \
mingw-w64-x86_64-sqlite3 mingw-w64-x86_64-toolchain \
mingw-w64-x86_64-zeromq mingw-w64-x86_64-glm zip \
mingw-w64-x86_64-libgit2 mingw-w64-x86_64-oce \
mingw-w64-x86_64-podofo mingw-w64-x86_64-libarchive --needed

When prompted, just hit return. Sit back and wait for it to install
what’s almost a complete linux environment.

Before continuing you may change to another directory. It easiest to
type cd followed by a space and drop the folder you want to change
to on the window.

Clone horizon

git clone http://github.com/horizon-eda/horizon
cd horizon

Build it

make -j 4

You may adjust the number to the number of CPUs in your system to speed
up compilation. Expect 100% CPU load for several minutes. Due to debug
symbols the resulting executables are of considerable size.

Running

You won’t be able to double-click the resulting executables since all
the required DLLs are in a directory unknown to windows. You’ll have to
launch them from the mingw shell using ./horizon-eda for example.
For the pool download to work, you’ll have to copy the file
/mingw64/ssl/certs/ca-bundle.crt to the directory the directory
horizon-eda.exe resides in.

Packaging

To create the zip archive as it’s available from the CI, run
./make_bindist.sh.

 Building on Linux

Building on Linux

Building horizon on Linux is as simple as make after you’ve cloned
this repo.

Install dependencies

Make sure you got these dependencies installed:

	Gtkmm3 ≥ 3.20

	cairomm-pdf

	librsvg

	util-linux

	sqlite

	boost

	zeromq

	glm

	libgit2

	curl

	opencascade / opencascade community edition

	zeromq with C++ bindings: https://github.com/zeromq/cppzmq

	podofo

	libarchive

	libspnav

The C++ compiler needs to support std::filesystem, for GCC this
requires version 8 or newer.

On Ubuntu ≥18.04 run:

sudo apt install libsqlite3-dev util-linux librsvg2-dev \
 libcairomm-1.0-dev libepoxy-dev libgtkmm-3.0-dev uuid-dev libboost-dev \
 libzmq5 libzmq3-dev libglm-dev libgit2-dev libcurl4-gnutls-dev liboce-ocaf-dev \
 libpodofo-dev libarchive-dev libspnav-dev

On Arch Linux:

sudo pacman -S zeromq gtkmm3 cairomm librsvg sqlite3 libgit2 curl \
 opencascade boost glm podofo libarchive libspnav

On Fedora 25/26/27:

sudo dnf install git make gcc gcc-c++ pkg-config cppzmq-devel OCE-devel\
 gtkmm30-devel libgit2-devel libuuid-devel sqlite-devel librsvg2-devel\
 cairomm-devel glm-devel boost-devel libcurl-devel podofo-devel libarchive-devel\
 libspnav-devel

On openSUSE Tumbleweed:

sudo zypper in git make gcc gcc-c++ pkg-config cppzmq-devel oce-devel\
 gtkmm3-devel libgit2-devel libuuid-devel sqlite3-devel librsvg-devel\
 cairomm-devel glm-devel boost-devel libcurl-devel libpodofo-devel binutils-gold libarchive-devel\
 libspnav-devel

On Solus:

sudo eopkg it -c system.devel

sudo eopkg it binutils-gold git glibc curl-devel libgtkmm-3-devel librsvg-devel \
 util-linux-devel sqlite3-devel libboost-devel zeromq-devel glm libgit2-devel \
 opencascade-ce-devel podofo-devel libarchive-devel cppzmq-devel

Build it

make -j 4 #adjust this to the number of CPU cores

Add WITH_SPNAV=0 to disable space navigator support and remove the dependency on libspnav

Running

The resulting binaries are self-contained and don’t require any external
data files like icons or so.
horizon-eda is the main program executable. Run it from the build
directory:

build/horizon-eda

 Building on FreeBSD

Building on FreeBSD

Building horizon on FreeBSD is as simple as gmake after you’ve cloned
this repo.

Install dependencies

sudo pkg install git gmake pkgconf e2fsprogs-libuuid sqlite3 \
 gtkmm30 cppzmq libgit2 boost-libs glm opencascade podofo libzip

Build it

gmake -j 4 #adjust this to the number of CPU cores

Running

The resulting binaries are self-contained and don’t require any external
data files like icons or so.
horizon-eda is the main program executable. Run it from the build
directory:

build/horizon-eda

 Parameter Programs

Parameter Programs

As explained on other pages, horizon supports parametrizable padstacks
and (to a limited extent) packages. To apply the given parameters to the
existing geometry, each padstack and the like is accompanied by a small
program.

These programs are written in a custom stack-based language. Users of HP
calculators should feel familiar. Since there aren’t any loops, these
programs will terminate in finite time. The stack holds signed 64bit
integers. Conceptually, it grows from top to bottom.

Syntax

On the top level, a program is made up of tokens. Tokens are separated
by any amount of whitespace.

Token types:

	Integers: a number, optionally prefixed by a sign

	Dimension: a number with optional fractional part, suffixed by “mm”.
The float before mm will get multiplied by 1e6, since horzion’s
internal unit of measurement is 1nm

	Mathematical operators such as: + - * /

	Strings

	Argument start [and end] any token between these two will
get appended to the last command’s arguments

Generic Commands

Zero-operand

get-parameter [<parameter>] gets paramter and pushes it onto the
stack

One-operand

Before the operation, the stack looks like this:

. .
. .
+---+
| a |
+---+

Operators:
 | pushes
dup | a a
chs | -a

Two-operand

Before the operation, the stack looks like this:

. .
. .
+---+
| a |
+---+
| b |
+---+

Operators:
 | pushes
+ | a+b
- | a-b
* | a*b
/ | a/b
dupc | a b a b (Duplicate coordinate)

Three-operand

Before the operation, the stack looks like this:

. .
. .
+---+
| a |
+---+
| b |
+---+
| c |
+---+

Operators:
 | pushes
+xy | a+c b+c
-xy | a-c b-c

Padstack commands

In order for an object (shape, etc.) to be manipulated by the program,
it needs to be assigned a parameter class. ## set-shape
set-shape [<parameter class> <form>] Sets a shape to the specified
form or moves it to the specified position Valid forms:

	rectangle, pops height, width

	circle, pops diameter

	obround, pops height, width

	position, pops y, x

set-hole

set-hole [<parameter class> <shape>] Sets a hole to the specified
shape Valid shapes:

	round, pops diameter

	slot, pops length, diameter

	position, pops y, x

Polygon commands (padstack and package)

set-polygon

set-polygon [<parameter class> <shape> <x0> <y0>] Sets a polygon
to the specified shape with center at (x0,y0) Valid shapes:

	rectangle, pops height, width

	circle, pops diameter

set-polygon-vertices

set-polygon-vertices [<parameter class> <n_vertices>] Pops
n_vertices coordinates from the stack and replaces the polygon’s
vertices with them.

expand-polygon

expand-polygon [<parameter class> <x0> <y0> <x1> <y1> ... <xn> <yn>]
Pops expansion. Expands the polyon specified by the coordinates in the
argument by the dimension popped from the stack.

Example program (from SMD rectangular padstack)

get-parameter [pad_width]
get-parameter [pad_height]
dupc dupc
set-shape [pad rectangle]
get-parameter [solder_mask_expansion]
2 *
+xy
set-shape [mask rectangle]

get-parameter [paste_mask_contraction]
2 *
-xy
set-shape [paste rectangle]

 Theory of Operation

Theory of Operation

Interactive manipulator

Horizon’s primary interface is the so-called “Interactive manipulator”
(imp). It’s the unified editor for symbols, schematics, padstacks,
packages and boards.

Canvas

The canvas renders objects such as symbols, packages or tracks. The
output of the rendering are line segments and triangles that get
uploaded to the GPU for drawing. For rendering to to non-OpenGL targets,
the canvas provides hooks to get more information on what’s being
rendered. So far, this is used by the gerber exporter, 3D preview and
DRC.

Core

Since some documents such as symbols and schematics contain the same
type of object (e.g. texts) and schematic and netlist need to be
modified in-sync, some encapsulation has to take place. The core can be
considered the glue between the document, the canvas and the tools.

Tools

For each action the user can do, there’s a tool. Once started, a tool
receives keyboard and mouse input and modifies the document accordingly
by means of the core. When needed, a tool may bring up additional
dialogs for requesting information from the user.

Property editor

Low-complexity adjustments such as line width don’t warrant their own
tool, that’s why the the core provides a property interface. The
property editor’s widgets are automatically generated from the object’s
description.

 CLI usage

CLI usage

The project and the pool manager have pretty much eliminated the need to
run the interactive manipulator and other tools directly from a shell,
but it’s still useful for development.

All of the commands below require the environment variable
HORIZON_POOL to point to the pool’s directory (the one with the
pool.json and pool.db in it)

horizon-imp

Symbol mode:

horizon-imp -y <symbol file>

Schematic mode:

horizon-imp -c <schematic file> <block file>

Padstack mode:

horizon-imp -a <padstack file>

Package mode:

horizon-imp -k <package file>

Board mode:

horizon-imp -b <board file> <block file> <via directory>

horizon-pool

Most of the -edit and -create commands will spawn $EDITOR with the file
to be edited serialized as YAML.

horizon-pool create-unit <unit file>
horizon-pool edit-unit <unit file>
horizon-pool create-symbol <symbol file> <unit file>

horizon-pool create-entity <entity file> [<unit file> ...]
horizon-pool edit-entity <entity file>

horizon-pool create-package <package file>
horizon-pool create-padstack <padstack file>

horizon-pool update #Recreates the pool's SQLite database.

Remember to run horizon-pool update after creating things

horizon-prj

Use these to create empty blocks, schematics, etc.

horizon-prj create-block <block filename>

horizon-prj create-schematic <schematic filename> <block filename>

horizon-prj create-board <schematic filename> <block filename>

 Python module

Python module

Parts of Horzion EDA are available as a python module for use in scripts.

Installation

The python module isn’t included in the all target. To build it, run make build/horizon.so. This requires the python 3 headers to be installed. You can then place it in python’s sys.path and import it using import horizon.

Usage

import horizon

#open project
p=horizon.Project("/path/to/project.hprj")

#open schematic
sch = p.open_top_schematic()

#export PDF
pdf_settings = sch.get_pdf_export_settings()
pdf_settings['output_filename'] = '/tmp/sch.pdf'
sch.export_pdf(pdf_settings)

#export BOM
bom_settings = sch.get_bom_export_settings()
bom_settings['output_filename'] = '/tmp/bom.csv'
sch.export_bom(bom_settings)

#open board
brd = p.open_board()

#export gerber
gerber_settings = brd.get_gerber_export_settings()
gerber_settings["output_directory"] = "/tmp/gerber"
brd.export_gerber(gerber_settings)

#export pick&place
pnp_settings = brd.get_pnp_export_settings()
pnp_settings["output_directory"] = "/tmp/pnp"
brd.export_pnp(pnp_settings)

#export STEP
step_settings = brd.get_step_export_settings()
step_settings["filename"] = "/tmp/pca.step"
brd.export_step(step_settings)

#run DRC
rules=brd.get_rules()
#modify rules if needed
rule_ids = brd.get_rule_ids()
#if needed, remove unneeded checks from rule_ids
result = brd.run_checks(rules, ids)

#export 3D rendering (see next section)
exporter = brd.export_3d(1920, 1080) #width, height
exporter.view_all()
exporter.load_3d_models() #optional
exporter.render_to_png("brd.png")

To further adjust the export settings, have a look at the dicts returned by the get_*_export_settings methods.

3D rendering usage

use brd.export_3d(1920, 1080) or similar to get an Image3DExporter object

	
class Image3DExporter

	
	
render_to_png(filename)

	Render to png image

	
render_to_surface()

	Render to pycairo surface

	Return type

	cairo.Surface

	
load_3d_models()

	Loads 3D models if available

	
view_all()

	Resets view to top side

	
cam_azimuth: float

	Camera azimuth angle in degrees

	
cam_elevation: float

	Camera elevation angle in degrees

	
cam_fov: float

	Camera field of view in degrees

	
cam_distance: float

	Camera distance in millimeters

	
center_x: float

	Where the camera looks at (millimeter)

	
center_y: float

	Where the camera looks at (millimeter)

	
background_top_color: 3-tuple of float

	Background color at the top, components range from 0 to 1

	
background_bottom_color: 3-tuple of float

	Background color at the bottom, components range from 0 to 1

	
solder_mask_color: 3-tuple of float

	Solder mask color, components range from 0 to 1

	
substrate_mask_color: 3-tuple of float

	Color of the PCB body, components range from 0 to 1

	
ortho: bool

	Use orthographic projection

	
show_models: bool

	Show 3D models

	
show_silkscreen: bool

	

	
show_solder_mask: bool

	

	
show_solder_paste: bool

	

	
show_substrate: bool

	

	
use_layer_colors: bool

	Use layer colors from 2D view for copper layers

 File versions

File versions

To protect against loss of fidelity when opening files in an older
version of Horizon EDA than they were created with, version 1.3.0
introduces the concept of file versions.

Rather than storing the application version in design files and pool
items, each file type has its own version number that’ll get
incremented if the file format changes in a way that’s incompatible
with older versions. That way, warnings about upgrading files are only
shown if needed. Forward compatibility, as in being able to open
files that were crated in an earlier version, is always given.

By Application version

	Type

	1.3.0

	1.4.0

	2.0.0

	2.1.0

	2.2.0

	2.3.0

	Unit

	0

	0

	0

	0

	0

	1

	Symbol

	0

	0

	0

	0

	1

	1

	Entity

	0

	0

	0

	0

	0

	0

	Padstack

	0

	0

	0

	0

	0

	0

	Package

	0

	0

	0

	0

	0

	0

	Part

	0

	0

	1

	1

	2

	2

	Frame

	0

	0

	0

	0

	0

	0

	Decal

	0

	0

	0

	0

	0

	0

	Schematic

	0

	0

	1

	1

	3

	6

	Board

	0

	2

	4

	4

	7

	14

	Project

	0

	0

	1

	1

	2

	2

	Pool

	N/A

	N/A

	N/A

	N/A

	0

	1

Changelog

As of Horizon EDA Version 1.3.0, all object types are at version 0. Any
changes will be listed here once they happen.

	Board:
	
	1: Add holes to PDF export

	2: Support pick & place export format customisation

	3: Add silkscreen color

	4: Add rule net class regex matching

	5: Add shorted pads rule

	6: Add pads only flag to silkscreen exposed copper rule

	7: Actually serialize from rules option for planes

	8: Add matching multiple nets in rules

	9: Add matching multiple components in rules

	10: Add thermal rules

	11: Add thermal spoke customisation

	12: Add net ties

	13: Add ODB++ export

	14: Add track connection offset

	Schematic:
	
	1: Add custom values on symbols

	2: Add hierarchy

	3: Add name orientation to block symbol ports

	4: Add connectivity checks

	5: Add support for UUID-based alternate pin names with direction

	6: Add net ties

	Project:
	
	1: Replace pool cache with project pool

	2: Add hierarchy

	Part:
	
	1: Add flags

	2: Add prefix override

	Symbol:
	
	1: Fix orientation-specifix text placement

	Pool:
	
	1: Add default frame

	Unit:
	
	1: Use UUIDs for alternate pin names and support directions

 Index

Index

 B
 | C
 | I
 | L
 | O
 | R
 | S
 | U
 | V

B

 	
 	background_bottom_color (Image3DExporter attribute)

 	
 	background_top_color (Image3DExporter attribute)

C

 	
 	cam_azimuth (Image3DExporter attribute)

 	cam_distance (Image3DExporter attribute)

 	cam_elevation (Image3DExporter attribute)

 	
 	cam_fov (Image3DExporter attribute)

 	center_x (Image3DExporter attribute)

 	center_y (Image3DExporter attribute)

I

 	
 	Image3DExporter (built-in class)

L

 	
 	load_3d_models() (Image3DExporter method)

O

 	
 	ortho (Image3DExporter attribute)

R

 	
 	render_to_png() (Image3DExporter method)

 	
 	render_to_surface() (Image3DExporter method)

S

 	
 	show_models (Image3DExporter attribute)

 	show_silkscreen (Image3DExporter attribute)

 	show_solder_mask (Image3DExporter attribute)

 	
 	show_solder_paste (Image3DExporter attribute)

 	show_substrate (Image3DExporter attribute)

 	solder_mask_color (Image3DExporter attribute)

 	substrate_mask_color (Image3DExporter attribute)

U

 	
 	use_layer_colors (Image3DExporter attribute)

V

 	
 	view_all() (Image3DExporter method)

_images/pool-mgr.png
< | Update pool

Create Edit

- RRP-RP-)

3517
5000
5001
7511811
1500606575000
1734035-2
10118194-0001LF
AD9122BCPZ
ADF4356BCPZ
DRF6780
AP2280-1WG-7
AP3015
AP301SAKTR-G1
AP921L
AS3320
ATtinyx5 DIP
ATtinyx5 SOIC
B340A-13-F
BCBAGAS
BC8S6AS

RIMIRAGENSNITN

Duplicate

s

Keystone
Keystone
Keystone

vee

Wiirth Elektronik
TE Connectivity
Amphenol FCI
Analog Devices
Analog Devices

Diodes Inc.
Diodes Inc.

Diodes Inc.

Diodes Inc.

Alfa

Microchip

Microchip

Diodes Inc.

Diodes Incorporated

Diodes Incorporated
Murata

Create Part from Part

Parts

5mm fuse clip
Miniature TH.
Miniature TH.
Light Pipe, 3
LED green cle.
Mini USB-8 .

Dual 16-Bit, 1.
6.8 GHz frac-,

Single Chann.
micro power

micro power

Single chip Li-
Voltage Contr.
AVR MCU wit
AVR MCU wit
3.0A surface

Dual NPN sm.
Dual PNP Sm.

Farrita hasd

3517

5000

5000
7511811
0603 LED
1734035-2
10118194-00.
727
QFN-32

SOT-23-5
U-DFN2030-.
DIP18, 7.62
DIP8, 7.62m.
SoIC-8

SMA
SOT-363
SOT-363
coem

Pool manager

ADRF6780 0
5.9 GHz - 23.6 GHz Upconver.

Preview | Info

ADRF6780ACPZN ADRF6780ACPZN-R7 ADRF6780ACPZN-R2

ADRF67.. v | 3 ADRF67... v

o passi.
fuse-holder
tp

tp

light-pipe me.
greenled
connector usb
connector usb
dacic

icpll

icrf

switch
dedcic regula,
dedcic regula,
batteryic
audioffilter ic
avr ey

avr ey
diode sma
dual npn sot-
dual pnp sot-

- = x

urer Analog Devices e ADRF6780
http:/fwww.anal..s/ADRF6780.pdf ADRF6780ACPZN-RT

K2 QFN-32 (Primary) A

_images/pool-prefs.png
Chm | e
T

@) oo et o U s nc
Schematic. 6d752bc3-20b3-45df-Bcf2-1e3aacefbect L

E\Modular_horizon\atoav-pool

[Ol
PSR-
Eodi hfzoreurnc

_images/place-parts.png
\

T Hee

_images/plane-style.gif
e e

AM < [EEE

%

EEENE (EE[ie] .
600] ¢ K

_images/pool_diagramm_full.png
Part inherited

Part inherited

XY74HCOOASDF Partsinherit | AB74HCOOASDF

“Entiy

~Pack

am bass

Hom base v

base Quad NAND DIP 14

pin-pad may
and entity

(‘package |

Package

DIP 14

from base
- Manufacturar: XY.In ko eart

ping dsfines
Eonpacton between psckage

(entity)

— 5 ~Manufacturer:Foo Ltd.
| - ity from base
Plckage! rom base

orderable part

Quad NAND

~pelygans for cutlne
< fl2 3 mes on Sikscrean

Padstack

F————"
S

Gate A | Gate B | Gate C | Gate D

E Unit I

Single Ended NAND

.

Single Power

[PinB _[PinY |

Lines Tt
Shemate)”

Directon: Iput || Directon: Input || Direction: Output Dirction: Power
("symbol | ("symbol |
NAND Single Power

Linss, Texts stc.
(geistiplayed n
chematic)

_images/prj-mgr.png

_images/part-wiz-pads.png
Part Wizard

D Input Alt. Names Gate | Main
aK Input Alt. Names Gate | Main
“CLK Input Alt. Names Gate | Main
Vee Power Input Alt. Names Gate | Main
- Output Alt. Names Gate | Main
a Output Alt. Names Gate | Main
Vee Power Input Alt. Names Gate | Main

_images/partinfo.png
Part Browser

LP5907MFX-1.8/NOPB nufacty
escription 250 mA Ultra-Low-Noise, Low .. ‘

Gate| Three-t.. v | Symbol| Three-t.. v

250-mA ultra-low: ropout
igikey 296-41463 Stock: 241,460

1 5$0.550
10 $0.475
25 50.444

Digikey 296-41463-6-ND Stock: 241,460
1 5$0.550
10 $0.475
25 50.444

Famell 3007714 Stock: 8,422
1 £0.402
50 £0.351
100 £0.211

Mouser 595LPS907MFXL.8NPB Stock: 28,289
1 $0.540
10 $0.450
100 $0.271

Newark 28AH3785 Stock: 8,382
1 5$0.540
10 $0.450
25 $0.390

_images/part-browser.png
m assgnpt || @ Part Browser -8 x

(i
e [@m
e
Manufacturer | Q Texas
% MPNScarch
Tags opamp X soic-8 X dusl X flet X | +
e
+ Manufacturer Description_ Package Tags
e
W ruorzcoes Tows nstraments Dusl LowNis.. S0IC-8 dul et opam.
fesiore | MTWOT2COG Tows nstruments Dusl LowNois.. SOIC-8 dualfet opam..
Minoncor Tows nstruments Dusl LowNois.. SOIC-8 dualfet opam..
W ruorzcores Tows nstruments Dusl LowNois.. SOIC-8 dualfet opam..
Wi riorzcore Tows nstruments Dusl LowNois.. SOIC-8 dualfet opam..
. Moo Tows nstruments Dusl LowNois.. SOIC-8 dualfet opam..

i riorznes Tos nsruments Dul Low-Nis.. S0IC-# dul et opam..

_images/part-editor.png
Save

MPN

orderable MPNs

Value

Manufacturer

Datasheet

Description

Tags

Base part

Entity

Package

3D Model

Parametricdata

Table | None

Inerit

ADRF6780ACPZN, ADRF6780ACPZN-R7, ADRF...

Inherit

Analog Devices Inherit
http:/fwww.analog.com/medialenitechn | Inherit
5.9 GHz - 23.6 GHz Upconverter Inherit

icx x| +

Inherited: Inherit

none

ADRF6780ACPZN-R7 | Analog Devices

QEN-32 Change

QFN-32-1EP_Sx5Smm_PO.Smm.step v | Inherit

Part Editor
Gate v Pin
Main AGND
Main BBIN
Main BBIP
Main BBGN
Main BBQP
Main IFIN
Main IFIP
Main LOIN
Main LOIP
Main PWDN
Main RFON
Main RFOP
SCLK.
SDIN
sDTO
VATT
VDET
VP18
vpBB
Ve8I
VPDT
VPLO
VPRF
~ALM
~RST
~SEN

0 pins not mapped

Mapped

LR A O O A B A O O N S R SR S O S O SR R SR SR SR R AR Y

Map

Unmap

Automap
pads

Select
pads

Select
pin

Copy from
other part

Pad~ Gate Pin
1 Main VDET
2 VPDT
3 VPRF
4 AGND
5 RFOP
6 AGND
7 RFON
8 AGND
9 VPRF
10 VATT
u BBGN
2 BBGP
B BBIP
1 BBIN
15 VPBB
16 PWDN
7 ~RST
18 IFIN
19 AGND
2 IFIP
2 vPBI
2 VP18
3 SDIN
p SCLK
k3 sDTO
% ~SEN
7 VPLO
8 LOIN
2 AGND
30 Lop
31 VPLO
32 ~ALM
PAD Main AGND
0 pads not mapped

nav.xhtml

 Table of Contents

 		
 Horizon EDA documentation

 		
 Why another EDA package

 		
 Feature overview

 		
 Sane and simple part management

 		
 Easy part creation

 		
 Easy package creation

 		
 Loves beginners and power users alike

 		
 A schematic editor that knows what you’re doing

 		
 Interactive router with online DRC

 		
 Powerful rules

 		
 Interactive length tuning

 		
 Parametric Search

 		
 Stock information

 		
 Smart Head-up Display

 		
 Industry-standard fabrication outputs

 		
 Mechanical CAD integration

 		
 Painless panelisation

 		
 Versatile input device handling

 		
 Make it yours

 		
 There’s much more

 		
 Non-Goals

 		
 Autorouter

 		
 Simulation

 		
 Raytracer

 		
 On File formats

 		
 Made with Horizon EDA

 		
 X-Band Transmitter

 		
 Hubble (SFP Multitool)

 		
 Fuse board of the Formula Student Racecar “eSleek19” of DHBW Engineering Stuttgart e.V.

 		
 Installation

 		
 Stable release

 		
 Windows

 		
 Linux

 		
 FreeBSD

 		
 Development version

 		
 Windows

 		
 Linux

 		
 FreeBSD

 		
 Setting up a pool

 		
 Git

 		
 Pool manager

 		
 Create a new Project

 		
 Draw a Schematic

 		
 Placing Parts

 		
 Connecting Parts

 		
 Basic Movement

 		
 Power Nets

 		
 Annotation

 		
 Create a Board

 		
 Draw a Board Outline

 		
 Place the Packages

 		
 Add Planes

 		
 Route the Nets

 		
 Example project

 		
 Digi-Key API integration

 		
 Registering

 		
 Logging in

 		
 Tools

 		
 How to select the right tool

 		
 Spacebar Menu

 		
 Grid

 		
 Numeric Entries

 		
 Drawing

 		
 Draw Line

 		
 Draw Line Rectangle

 		
 Draw Arc

 		
 Draw Polygon

 		
 Draw Polygon Rectangle

 		
 Draw Polygon Circle

 		
 Draw Dimension

 		
 Selection

 		
 Basics

 		
 Selection Mode

 		
 Selection Filter

 		
 Moving and the interactive manipulator

 		
 Move with Mouse

 		
 Move with Keyboard

 		
 Move Exactly

 		
 Flip

 		
 Rotate

 		
 Layers

 		
 Tips and Tricks

 		
 Quickly start tracks an net lines

 		
 Duplicating objects

 		
 Panning without a middle mouse button

 		
 Versatile length input

 		
 Sorting pool items by modification time

 		
 Schematic Editor

 		
 Placing parts

 		
 Nets and net segments

 		
 Power symbols

 		
 Buses

 		
 Diffpairs

 		
 To board

 		
 Hierarchy

 		
 Net ties

 		
 Screenshots

 		
 Board Editor

 		
 Planes

 		
 Vias

 		
 Importing logos

 		
 Board outline

 		
 Reconnecting tracks without a net

 		
 Diffpairs

 		
 Nets window

 		
 Hide Airwires

 		
 Recolor nets

 		
 Panelisation

 		
 Shorted pads

 		
 Net ties

 		
 Offset pad connection

 		
 Screenshot

 		
 Copying layout and placement

 		
 Motivation

 		
 Groups & Tags

 		
 Board

 		
 Copy placement

 		
 Copy tracks

 		
 Backannotating connections

 		
 How To

 		
 Limitations

 		
 Rules

 		
 Why a Pool?

 		
 What’s a pool

 		
 Organisation in the file system

 		
 Including other pools

 		
 Contributing

 		
 Elements of a Part

 		
 Parts

 		
 Packages

 		
 Entities

 		
 Units

 		
 Symbols

 		
 Padstacks

 		
 Project pool

 		
 Pool Manager

 		
 Inherting from an existing part

 		
 Create part from existing Entity

 		
 Create all-new part

 		
 Where to save things

 		
 The Pool database

 		
 Creating a Package

 		
 Pads

 		
 Package outline

 		
 Assembly outline

 		
 Silkscreen

 		
 Courtyard

 		
 Contribute to the Pool

 		
 Using the GitHub integration.

 		
 Upgrade pool

 		
 Create pull request

 		
 Helping by reviewing

 		
 Building on Windows

 		
 Install MSYS2

 		
 Start MSYS console

 		
 Install updates

 		
 Install dependencies

 		
 Clone horizon

 		
 Build it

 		
 Running

 		
 Packaging

 		
 Building on Linux

 		
 Install dependencies

 		
 Build it

 		
 Running

 		
 Building on FreeBSD

 		
 Install dependencies

 		
 Build it

 		
 Running

 		
 Parameter Programs

 		
 Syntax

 		
 Generic Commands

 		
 Zero-operand

 		
 One-operand

 		
 Two-operand

 		
 Three-operand

 		
 Padstack commands

 		
 set-hole

 		
 Polygon commands (padstack and package)

 		
 set-polygon

 		
 set-polygon-vertices

 		
 expand-polygon

 		
 Example program (from SMD rectangular padstack)

 		
 Theory of Operation

 		
 Interactive manipulator

 		
 Canvas

 		
 Core

 		
 Tools

 		
 Property editor

 		
 CLI usage

 		
 horizon-imp

 		
 horizon-pool

 		
 horizon-prj

 		
 Python module

 		
 Installation

 		
 Usage

 		
 3D rendering usage

 		
 File versions

 		
 By Application version

 		
 Changelog

_images/3d-pkg.png
Update Settings) O @ @ & © ¢ I B 3DPreview

3D Models Add model Reload models

3d_modelsflocal/connectors/sfp/UE75A20X000T step

G Defauit Current Browse...

Reset placement || Place at pad
X 0000mm - + Roll | 0.00°
0000mm = 4 Pich 0.00°

Z 0000mm - 4+ 0.00°

_images/3d-view.png

_images/annotation-after.png
t

BC846AS
Q1A
€

Vv

av
J1
,‘ 1
R B
1k Z
N R2
AT 1009
AL, B
| C1 JED 3mm
100 uf

J7GND

GND

_images/annotation.png
@
O
0o
~
o m;

C

> U

™\

5,

_images/3d.png
Explode

Solder mask

Silkscreen

Solder paste

Substrate

3D Models

Layer colors

Background

Projection

Antialiasing

Perspective

4x MSAA

Default

Ortho

3DPrev

_images/add-plane.png

_images/collage.png
Update Setings @ B @ D & H ¢ 3D Preview Schematic - Interactive Manipulator

Explode

Solder mask

Silkscreen

Solder paste

Substrate

3D Models

Layer colors

Background

Projection Perspective

Antialiasing ~ 4x MSAA

0.250 mm

Pool manager

Layers : .

Top Notes
© [l Outline
© [l Top Courtyard
op Assembly
© [l Top Package
Top Paste
[Top Silkscreen
© [l Top Mas|

© [l imer1

©
B ek

—
GND

QFN-32 (Prim:

DAC PWR_HEN

o [l Bottom Copper
W Bottom Mask
[Bottom Silkscreen
Bottom Paste
© [l Bottom Package
© [l Bottom Assembly
© [l Bottom Courtyard

Bottom Nol light-pipe me... .json

. - ; greenled on
connectorusb .json
Dim othe =LEE connector usb

dacic

E
dedcic regula,
dedcic regula,
batteryic
audio filter ic
avr meu
avr meu
diode sma

+38v.Uz dual npn sot-
dual prp sot-

include origin) &

16657 Resulte

_images/board-appearance.png
Eé‘iiés

tic appearance

Affects Padstack, Package and Board

Fine grid modifier

Grid style

Grid opacity

Highlight cim

Highlight lighten

Cursor size

Cursor size in tool

Antialasing

_images/buses.png
Manage buses

Bus Name | RMIl

MDC

MDIO

RXDO

RXD1

DO

_images/colorscheme3.png
e

C103

R101

22 pF
700 k0

R102

700 k0
R104 Lo OPA2197
700 k0

_images/colorscheme4.png
C103

S

R101

22 pF
100 kQ

R102

100 kQ
P SNWCE
100 kQ . -

£ "u101A

_images/colorscheme1.png
AR ot [0k A
+ 4+ + + + 4+ + + + + +F FTE o+ o+ o+ o+
+ + F + 4+ o+ 4 + + +
CLRon T T
22 pF
T de—e | oo 220, . 1. .
e OORD I e e e
R102
S RO 2
:
N D L s e RN
100 k
oo oo afeles HORR, I ..
POl O O
Qe R + OPA2197
i
e B e »
100 kQ
o on WO, .ol
oo oo o %
LG T R B LG I R B R R R B
L e N[T
PP 4 S S Y

_images/colorscheme2.png
C103

R101

22 pF
100 kQ

R102

b | S|

100 kQ
il P OPA2197
100 kQ : -

U101A

_images/digikey-app-create.png
Add Production App to Horizon EDA Project

Members of an Organization can see all Production Apps that are created for that Organization. Any API Products that are selected below grant

production-level access to those API Products.
Production App name
My cool app
OAuth Callback @ Learn more about OAuth 2.0
https://horizon-eda.org/oauth.html

Description

Select one or more Production products:

Product Information

None Product Information

_images/digikey-app-secrets.png
Horizon EDA production app

View | Edit Delete

Production App status
Callback URL hitps://horizon-eda.org/oauth.htmi
Credential
APIs
Client ID SFRSETIFASITIFANICIFAS

Product Information

Client Secret WISETTAIST

Issued 4 days 20 hours ago
Expires Never

Key Status

_images/colorscheme5.png
C103

s

R101

32 bF
1700 k0

R102

.

100 ko
K104 |+ 2> OPA2197
100 k0 . Mg

t"u101A

_images/dhbw-fuse-brd.jpg

_images/digikey-org.png
Organizations

+ Create Organization

Organization name ¥ Status Operations

Horizon EDA Project Production Apps Members

_images/sheets-blocks-dia.png
v Top block
¥ USB

BN oo | pelandscape

Key | Value

_images/digikey-prefs.png
Preferences

Board appearance

Schematic appearance

Provider | Digi-Key

See the docs for obtaining Client ID and secret.

Client ID

Client secret

Max. price breaks

Cache

Site

Currency

'y
'y
3 -+
5days -
Germany (DE) -
Euro (EUR) -

Not every currency is supported on every site. Site and
currency only apply to new queries.

Login

Notoken, signin to obtain one.

Clear cache

_images/shorted-pads.png

_images/sheets-blocks.png
Sheets and blocks
v First sheet 1
v Channel 1

v Channel 2
usB

» UsB

_images/spacebar_board.gif

_images/sort-mtime.png
Unit Path

2CH Feedthrough ESI iode/tvs/2ch-feedthrough-esd-protection json
4ch ESD Protection units/diode/tvs/4ch-esd-protection json

e e b e

_images/rules.png
Apply rules Rules Checks
15t Match Net class POE)
0.2 Match Net class POE (MEsi
Layer 10000
15 Match 2 Match Layer Routing offset
15 Match Net class POE
121 Match Net dass default [S A ~ | poe ~ | Netdass - | deraut - Ay ~ | 0050mm
Layer 10000
Paameters 15 Mot Netcoss ettt | L2808] [Tk S S (e i
22" Match Net class default
Vias Coyer 10000 ‘ ‘ 1,000 mm ‘
Copper-NPTH clearance
1 Match All || 1000 mm | 1000mm - 4|
Planes 3 2" Match All
Layer 10000 THpadM ‘ 1,000 mm ‘ ‘ 1000mm - ‘ ‘ 1000mm -+ ‘
|l1000mm - 4| 1000mm - + | 1000mm - 4|
| 1000mm - 4| 1000mm - + | 1000mm - 4+ 1000mm -

_images/routing.png
+ 4 F F+ |+ £+ + 4+ ++ 4+ +++++++ ++ + + L e e e e
+ + o+ o b+ 4|+ s+ R o[+ o+ o+
4 . s L plbels & s
+ + o+ o b+ +)+ 1 R R
- P w oafe L TR F]
4o d b afs L ! + A+ + 4+ 1 A F]
+ o+ b+ 11 - + o+ T R
4o d b w afe L I EEE IR RN F]
4o 4 4o - b T+ e+ | AUDTHCHCEE o - o
5o+ + o+ + o+ |+] R R
% + - F]
& I I R R I &+ IR T

&R R N I I T PR U
P P P

A + R R R R s F T I
AT + e R R Y — F T I
P o r++++++++++++®+++++++++
+ o+t 4 R | 4 4t o+t o+ o+t o+ o+ + o+ o+

Route track interactive LMB:place junction/connect RMB:finish and delete last segment /:track posture vitoggle via routing unnamed net. track width +000.200 mm (default)

_images/selection-filter.gif
O

B T T T S S S A T R S
T S T T S e S S A S S S
T T T T T S S S S
T T T T T S S S S
P R Ik Ik T T T T S S S A S S S

B T T T S S S A T R S
T S T T S e S S A S S S
T T T T T S S S S
P R Ik Ik T T T T S S S A S S S

B I T T T T S A A A I
B R TR TR T T T T T S S S S A S S S
T S T T S e S S A S S S
T T T T T S S S S
P R Ik Ik T T T T S S S A S S S

B T T T S S S A T R S
T S T T S e S S A S S S
T T T T T S S S S
T T T T T S S S S
P R Ik Ik T T T T S S S A S S S

B T T T S S S A T R S
T S T T S e S S A S S S
T T T T T S S S S
P R Ik Ik T T T T S S S A S S S

B T T T S S S A T R S
B T T T S S S A T R S
T S T T S e S S A S S S
T T T T T S S S S
P R Ik Ik T T T T S S S A S S S

B T T T S S S A T R S
T S T T S e S S A S S S
T T T T T S S S S
T T T T T S S S S
P R Ik Ik T T T T S S S A S S S

B T T T S S S A T R S
T S T T S e S S A S S S
T T T T T S S S S
P R Ik Ik T T T T S S S A S S S

B T T T S S S A T R S
B T T T S S S A T R S
T S T T S e S S A S S S

_images/schematic-powernets-menu.png

_images/selection.gif
| ATT
7B 100kQ o4
L 100 k@)
S7GND
J TLO74| R
10
e 100
R32 b=
3 1
(—
100 kQ BIAS 1
100k
2 —

CHNT_CV[1]

_images/selection-mode.gif

_images/draw-line.gif

_images/draw-net.gif
U?A

TLO72

_images/draw-line-action-bar.png
Drawline LMB:place junction/connect RMBinish current segment wiine width /:restrict any

_images/draw-line-rectangle.gif

_images/drc-mt.png
Hole size WPass
Track width WPass
Copper clearance M Running *§ Patch pair 108290/129872

_images/drc.png
Hole size Pass
Track width Pass
~ Copper clearance

Track(GND) near Via(+12
~ Clearance Copper - Other
Pad() near NPTH hole

Pad() near NPTH hole Fail
Pad(GND) near NPTH hole Fail
Pad(GND) near NPTH hole Fail
~ Preflight checks Fail
Airwire of net BTN_UP. Fail
Airwire of net BTN_DOWN Fail

Clearance Copper - Keepout Pass

_images/draw_polygon_with_arc.gif
—+x

_images/drawing-commands.png

_images/entry.png
40.250 mm

_images/project-manager.png
Saveall

Project manager

Project Tile | bimple LED-Binker

Project Directory DASimple LED-Blinker

Pool Horizon default pool. Use this one!

EAModular_horizon\atoay-pool

Y W Q

Top Schematic Board Part Browser

Change

Pool Cache

_images/project-dialogue.png
Pucthme | Smge -k |

WA b used for ie names, 5o keep short and smpe.

P T | Sl i |

Forreference only, wte what you war.

o [Horton st o i i -]

sucrun [oaTa D) =

Diectory in which the projects diectory il be reste.

Project Directory DASimple LED-Blinker

R - - i

_images/project-menu-select-top-schematic.png

_images/project-menu-select-board.png

_images/draw-arc.gif

_images/hubble.png

_images/hud.png
- Interactive Manipulator

Symbol U103
MPN: TPS7A4700RGWR

Manufacturer: Texas Instruments

Sheets 36V, 1A, 4 4V RMS,, RF LDO Voltage Regulator

1 FPGA Power

2 FPGA/USB
FPGA

PLL/ Clock

+ Tif

_images/grid.gif

_images/groups-tags.png
.B/NOPB
= 8\/ DAC_CVDD i .8V_DAC_CVDD

LP5907MFX—3.3/NOPB
G:VR—+11.8V_DAC_IQVDD .BY_DAC_IGVDD

_images/imp-sch.png
Sheets and blocks

JUsB

ction (Box, include origin) &

Symbol C113

XBand Transmitter - Schematic

MPN: C1210C476MA4PACTU

Manufacturer: KEMET
Package: C1210

‘SMD MLCC, X5R Dielectric, 4 — 50 VDC

Datasheet
Group: 14
Tag:17

50 mm Y:+141.250 mm

space for menu

~ Symbols
«

Ref. Desig.

Pin directions

Pin display

1. only

Show all pads

Custom value

Svalue
Spkg

 Components
« 1

Ref. Desig.

_images/incr-set.png
Cut
Copy
Paste
Delete
Select All

O 0.01mm

_images/hud2.png
AY:+000.800 mm

AX:+000.000 mm

2Pads

_images/imp-brd.png
o Rules. XBand Transmitter — Board Reload netlist x
_ N Package U103 v Packages
b [0250mm + -2 MPN: TPS7A4700RGWR p N
Manufacturer: Texas Instruments
5 Package: RGW
yers Op 9 . Desig.
S0 tions 36V, 1A, 4 pV RMS,, RF LDO Voltage Regulator Ref. Desig
Top Notes. u103
1
Outline Notes -
© [l Outline
© [l Top Courtyard RGW (default) v
© Ml Top Assembly
© Ml Top Package MPN
Top Paste A4TOORGWR
Top Sikscreen
W Top Mask Value
© Top Copper TPS7AAT
© W Innert
© Wl imer2 Flipped
© [l Bottom Copper
W Bottom Mask
Bottom Silkscreen Position X
Bottom Paste
+35.750 -
© Ml Bottom Package mm +
— Position Y
F— . 21750mm — +
Asis - Angle

Selection (Box, include origin) 4 Y:+018.068 > space for menu

_images/fab-out.png
Fabrication outputs.

NC-Drill GerberLayers
Mode | Merge PTH & NPTH B Goutne i
Drillsuffix | et
Top Paste Sufix
GerberSettings
Top Silkscreen Suffix
Outline vidth | 0.010 mm +
Top Mask Sufix
Output Settings
Base ilename | hubble Top Copper Suffx
Directory | outputlgerber Browse... Bottom Copper S
cenerae 7o @) BottomMask Suffix
Resulingilerames are the concatentatonaf base flename andsufc

Bottom Silkscreen Suffix

Bottom Paste Suffix

Wrote Layer Bottom Paste to gerber file /ome/lukas/code/hubblefoutput/gerber/hubble.gbp
Wrote Layer Bottom Silkscreen to gerber file fomeflukas/code/hubble/output/gerber/hubble.gbo
Wrote Layer Bottom Mask to gerber file /home/lukas/code/hubble/output/gerber/hubble.gbs
Wrote Layer Bottom Copper to gerber file fhome/lukas/code/hubble/output/gerber/hubble. gbl
Wrote Layer Top Copper to gerber file fhomelukas/code/hubble/output/gerber/hubble. gtl

Wrote Layer Top Mask to gerber file /home/lukas/code/hubble/output/gerber/hubble.gts

gko

gtp

.gto

gts

atl

gbl

gbs

.gbo

.abp

_images/fp-gen.png
CHIPARRAY ~ Small outline transistor (JEDEC TO-236AB) Pl
LEDSC Body.
2.900 mm -+
MELF
MOLDED. 1.300 mm -+
s 3 pins. 5pins
so Lead
0.950 mm -+
SoD
0.365 mm -+ S 0.235mm -+
SODFL
0.420 mm -+ S 0.120 mm -+
soJ
2.370mm -+ S 0.270 mm -+
QFP
Cale
SON
Most Nominal Least
QFN
0.100 mm -+
PSON
0.100 mm -+
PQFN
Generate
BGA
u None 0.01mm 0.02mm 0.05mm
soT223
Rectangular Rounded rectangular
DIP
SIP
Lead span asperlPC-73518, Table 3-2

PGA Distance measured from lead termination to lead termination. Flat Ribbon L and Gull-Wing Leads (greater than 0.625 mm pitch)

_images/nets.png
Q Airwires Nets x

Net filter | Q PLL a a v
Allon | Alloff Airwires only

Net v | Netclass | Airwires
+33V_PLL default I
+33V_PLL_F default I
+33V_PLL_OUT default I
PLL_CE default 1
PLL_CS default]
PLL_MOSI default]
PLL_MUXOUT default]
PLL_REFCLK+ w00dit (30
PLL_REFCLK- 100diff G@o

PLL_SCK default 0

_images/offset-connection.png
()

g

S)

@

5.8 |

Offset connection

Standard connection

_images/net.gif
2 e e e S S S S S e e s o s sl

-+ o+ +
-+ o+ +
-+ o+ +
-+ o+ +
-+ o+t

L i A
L i A

+ + +
+ 4+ o+
+ 4+ o+

+(@+
Nt
+ N
+F 4
+ o4+

[i A

+ o+ o+

+oF o+

L i A
R

+ o+ o+ o+ o+

o a
+[3+
+E)+
TNt

Py
E

+ o+ o+ o+ +

+ +/‘+ ELF+ + o+ +4;L7® pFJf +

+ 4+ o+

+ 4+ o+

+ o+ o+ o+ o+

T T A A T

-+ o+ +
-+ o+ +
-+ o+ +
-+ o+ +
O

EE S

SR

EE T N R
EE T N R
EE T N R

ggt Tttt E

==

EEE T T I

B i At S S

O+ + = + + =

r@++++++

3

o &
TP
EEE

.
.
.

-

_images/net_merge.png

_images/param.png
Capacitors

cPL
Samsung
TDK
Yageo

Search Reset

CCO603K_X7R6BB104
CL10B104MOBNNN
CL10B104KOSNNN
CL10B104JOBNNN
CCO603M_X7R7BB104
CC0603)_X7R7BB104
CCO603K_X7R7BB104
CL10B104JABNNN

CL10B104AMABNNN
CC0603)_X7R8BB104
(CCO6O03K_X7R8BB104
CCO603M_X7R8BB104

CPL-CAP-X7R-0603-100..

CL10B104JBENNN

CI10R1D4KRRNNN
Resul

10V
16V
25V
50V

N/A
5%
10 %

209%

Package (1) X Type (1) X Value (1) X

Yageo
Samsung
Samsung
Samsung
Yageo
Yageo
Yageo
Samsung

Samsung
Yageo
Yageo
Yageo
cPL
Samsung
Samsuna

0603
0603
0603
0603
0603
0603
0603
0603

0603
0603
0603
0603
0603
0603
coa03

100.00 nF
100.00 nF
100.00 nF
100.00 nF
100.00 nF
100.00 nF
100.00 nF
100.00 nF

100.00 nF
100.00 nF
100.00 nF
100.00 nF
100.00 nF
100.00 nF
100.00 nF

10V
16V
16V
16V
16V
16V
16V
25V

25V
25V
25V
25V
50V
50V
50V

X7R
X7R
X7R
X7R
X7R
X7R
X7R
X7R

XTR
X7R
X7R
X7R
X7R
X7R
XTR

Part Browser

10 %
209%
10 %
5%
209%
5%
10 %
5%

20 9%
5%
10 %
209%
N/A

5%
0%

CL10B104KABNNN ufacturer Samsung
e Ceramic Capacitor 100 nF 25V X7R ee
E CL10B104KABNNNL CL10B104KASNNNC CLI0B104KABNNND

Two-ter.. v | Symbol | Capacitor v e C0603 (Primary)

o x

Lue 100 nF

_images/out